
TRAFFIC ENGINEERING IN SOFTWARE-DEFINED
DATA CENTER NETWORKS FOR IOT

Ayan Mondal

TRAFFIC ENGINEERING IN SOFTWARE-DEFINED
DATA CENTER NETWORKS FOR IOT

Thesis submitted to the
Indian Institute of Technology Kharagpur

for award of the degree

of

Doctor of Philosophy

by

Ayan Mondal

Under the guidance of

Professor Sudip Misra

Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur

Kharagpur - 721 302, India
December 2020

© 2020 Ayan Mondal. All rights reserved.

DECLARATION

I certify that

a. The work contained in the thesis is original and has been done by myself under
the general supervision of my supervisor.

b. The work has not been submitted to any other Institute for any degree or diploma.

c. I have followed the guidelines provided by the Institute in writing the thesis.

d. I have conformed to the norms and guidelines given in the Ethical Code of Conduct
of the Institute.

e. Whenever I have used materials (data, theoretical analysis, and text) from other
sources, I have given due credit to them by citing them in the text of the thesis
and giving their details in the references.

f. Whenever I have quoted written materials from other sources, I have put them
under quotation marks and given due credit to the sources by citing them and
giving required details in the references.

Ayan Mondal

Dedicated to
My Family

ACKNOWLEDGMENT
During the period of my PhD research, there are many people whose guidance,

support, encouragement and sacrifice have made me indebted for my whole life. I take
this opportunity to express my sincere thanks and gratitude to all these people.

First, I would like to express my deepest gratitude to my revered supervisor Professor
Sudip Misra for his invaluable guidance and encouragement throughout my work. His
constant motivation, support and infectious enthusiasm have guided me towards the
successful completion of my work. My interactions with him have been of immense help
in defining my research goals and in identifying ways to achieve them. His encouraging
words have often pushed me to put in my best possible efforts. Above all, the complete
belief that he has entrusted upon me and has instilled a great sense of confidence and
purpose in my mind, which, I am sure, will stand me in good stead throughout my
career.

It gives me immense pleasure to thank the head of the department Professor Dipan-
wita Roy Chowdhury for extending me all the possible facilities to carry out the research
work. My sincere thanks to my doctoral scrutiny committee chairman Prof. Rajib Mall
and all of my doctoral scrutiny committee members Professor Manoj Kumar Tiwari,
Professor Sourav Mukhopadhyay, Dr. Arijit Dey, and Dr. Rajiv Ranjan Sahay for their
valuable suggestions during my research. I sincerely remember the support of office staffs
Swapan Babu, Mithun Da, Bappa Da, Pratap Da, Malay Da, Anup Da, Binod Da, Ajay
Da, and Utpal Da.

I would like to express my thanks to Aishwariya, Satendra, Ilora Di, Abhishek Da,
Sankar Da, Tamoghna Da, Barun Da, and other SWAN Research Group Members. It
is a great fun and source of ideas and energy to have friends like Aishwariya, Satendra,
Pradyumna, Samaresh, Anandarup, and Arijit Da for making the stay at Kharagpur
ever memorable. I also wish to convey my special thanks to my friends Srinibas and
Sridhar for their support and motivation.

Nothing would have been possible without the moral support of family members, who
have been the pillars of strength in all my endeavors. Without their unconditional love,
sacrifice, support and encouragement, I would have never come this far. I am always
deeply indebted to them for all that they have done for me.

Ayan Mondal

ix

Abstract

In the last two decades, the data generated by different Internet of Things (IoT) appli-
cations has increased significantly. The real-time processing, computation, and analysis
of these generated data, which is termed as ‘big-data’, typically demand support from
geographically distributed data centers. These well-connected data centers, forming a
data center network (DCN), try to optimize the load distribution among the switches.
However, the traditional DCN suffers from unbalanced traffic load and low utilization
of network bandwidth, which, in turn, increase energy consumption and degrade the
overall performance of the DCN. On the other hand, with the advancement of IoT tech-
nologies, different IoT devices are capable of generating and processing a huge amount
of data. Hence, there is a need to integrate these IoT devices into the DCN architec-
ture. We argue that this cannot be done using traditional network architecture, as the
traditional network devices, such as switches and routers, are not capable of handling
different application-specific protocols and heterogeneous IoT devices, due to vendor-
specific infrastructure.

We envision that the aforementioned limitations can be resolved by integrating the
traditional DCN with the software-defined network (SDN) architecture, which is named
as ‘software-defined data center network’ (SD-DCN). SD-DCN assumes the advantages
of SDN by decoupling the network control tasks from the tasks of packet forwarding
and processing, while dividing them into two parts – the control plane and the data
plane. Due to the presence of heterogeneous IoT applications, SD-DCN needs to han-
dle heterogeneous elephant and mice flows. The existing literature on SDN and DCN
focused on the traditional networking issues. However, the implications of the presence
of heterogeneous IoT flows need further investigation. In this thesis, we focus on the
traffic management strategies in SD-DCN to handle heterogeneous flows generated from
the IoT devices and data centers, while ensuring the quality-of-service (QoS) require-
ments of data traffic in terms of network-delay, -throughput, and -resource utilization.
A summary of the major contributions reported in this thesis is presented as follows.

Initially, we focus on designing a probabilistic performance analysis model of an SDN
OpenFlow system for data traffic management while considering that the switches are
equipped with a finite size buffer. This design helps us to understand the performance
of the SDN switches in terms of the probabilities of a packet to be forwarded to the

xi

controller, to the next switch, or to be dropped. Consequently, we designed a scheme
to evaluate the optimal buffer size for each switch based on the number of ingress ports
and the data traffic pattern, i.e., the packet arrival and processing rates, in an SDN
OpenFlow system. Through simulation, we observe that with two times increase in
packet processing rate, the packet arrival rate can be increased by 26.15-30.4%. We
infer that for an OpenFlow system, the minimum buffer size is 0.75 million packets
with the maximum packet arrival and the minimum processing rate of 0.20-0.25 million
packets per second (mpps) and 0.30-0.35 mpps, respectively. Thereafter, we consider
the presence of heterogeneous applications, which are associated with heterogeneous
elephant and mice flows, and have different requirements in terms of network delay and
throughput. To increase the flow-wise throughput in SD-DCN, we propose a throughput-
optimal data traffic management scheme and evaluate the optimal association of the flows
and the available one-hop switches. Additionally, we propose a delay-optimal data traffic
management scheme for reducing end-to-end network delay and increasing the overall
network throughput in SD-DCN. Simulation result show that the proposed schemes are
capable of reducing network delay by 77.8-98.7% while ensuring 24.6-47.8% increase
in network throughput compared to the existing schemes. Additionally, the proposed
schemes ensure that per-flow delay is reduced by 27.7% with balanced load distribution
among the SDN switches.

For the aforementioned schemes, we consider that each flow is associated with a
single source-destination pair. However, in SD-DCN, each IoT data traffic can be des-
ignated to more than one destination IoT device or data center. Therefore, we focus on
designing broadcast and multicast data traffic management schemes in the presence of
heterogeneous IoT devices. Moreover, we consider that the IoT devices act as the source
nodes and are mobile in nature. In these works, we aim to provide a QoS-guaranteed
end-to-end data delivery and maximize the utilization of available network bandwidth,
while maximizing the overall network throughput and reducing the flow-specific delay
in SD-DCN. Through simulation, we observe that the network throughput increases by
55.32%, while ensuring at least 33% increase in the average bandwidth allocation per
IoT device in data broadcast. Additionally, we observe that in data multicast, the net-
work throughput increased by at least 6.13% using the proposed scheme than using the
existing schemes, while ensuring at least 21.32% reduction in per-flow delay.

While designing the aforementioned schemes, we considered that a single SDN con-
troller is present in SD-DCN. However, traditional DCN can have multiple network
vendors. Therefore, there can be multiple SDN controllers in SD-DCN. In the existing
literature, the traditional multi-tenant SDN is visualized to be equipped with an ad-

xii

ditional centralized controller, named ‘proxy controller’ for ensuring optimal flow-table
partitioning. However, the presence of the proxy controller gives rise to a single point of
failure and bottleneck problems. Hence, to solve these problems, we propose a flow-table
partitioning scheme for distributed multi-tenant SD-DCN, while ensuring high through-
put and network satisfaction, and reducing flow-setup delay in SD-DCN. Finally, we
conclude the thesis, while highlighting the limitations of the aforementioned works and
the possible future research directions.

Keywords: Traffic Management, Internet of Things, Heterogeneous Flows, Quality-
of-service, Game Theory, Software-Defined Network, Data Center Network, Software-
Defined Data Center Network

xiii

Contents

Approval i

Certificate iii

Declaration v

Dedication vii

Acknowledgment ix

Abstract xi

Contents xv

List of Figures xxi

List of Tables xxiii

List of Algorithms xxv

List of Symbols and Abbreviations xxvii

1 Introduction 1
1.1 Introduction . 1
1.2 Scope of the Work . 4
1.3 Contributions . 7
1.4 Organization of the Thesis . 9

2 Literature Survey 11
2.1 Performance Analysis of SDNs . 11
2.2 Resource Management in SDNs . 13

xv

Contents

2.3 Resource Management in DCNs . 16
2.4 Concluding Remarks . 18

3 Theoretical Performance Analysis of SDN Switches 21
3.1 Markovian Model: The Justification . 22
3.2 State Diagram . 23
3.3 Probabilistic Analysis . 25

3.3.1 Output Action Probability . 32
3.3.2 Packet Drop Probability . 33
3.3.3 Send to Controller Probability . 34

3.4 Performance Analysis . 34
3.4.1 Simulation Parameters . 35
3.4.2 Performance Metrics . 35
3.4.3 Result and Discussion . 38

3.5 Concluding Remarks . 41

4 Buffer Size Analysis of SDN Switches 43
4.1 System Model . 44

4.1.1 Markovian Process: The Justification 45
4.1.2 Packet Flow through an OpenFlow Switch 46

4.2 OPUS Scheme: I-M/M/1/K Queue . 47
4.3 Case Study . 51

4.3.1 Case I : I = 1 . 51
4.3.2 Case II : I ≥ 2 . 52

4.4 Performance Evaluation . 52
4.4.1 Simulation Parameters . 53
4.4.2 Performance Metrics . 54
4.4.3 Results and Discussions . 55

4.5 Concluding Remarks . 57

5 QoS-Aware Data Traffic Management 59
5.1 TROD: The Throughput-Optimal Data Traffic Management Scheme . . . 60

5.1.1 System Model . 60
5.1.2 Justification for Using Evolutionary Game 62
5.1.3 Game Formulation . 63

5.1.3.1 Utility Function of Each Switch 64
5.1.3.2 Replicator Dynamics of TROD 64

xvi

Contents

5.1.3.3 Reduced Sub-Optimal Problem 65
5.1.4 Theoretical Analysis: . 66
5.1.5 Proposed Algorithm: . 68
5.1.6 Performance Evaluation . 68

5.1.6.1 Simulation Parameters 69
5.1.6.2 Benchmarks . 69
5.1.6.3 Performance Metrics . 70
5.1.6.4 Results and Discussions 71

5.2 FlowMan: The QoS-Aware Data Traffic Management Scheme 72
5.2.1 System Model . 73
5.2.2 Justification for Using Generalized Nash Bargaining Game 75
5.2.3 Game Formulation . 76

5.2.3.1 Utility Function . 77
5.2.4 Axioms for Generalized Nash Bargaining Solution 79
5.2.5 Existence of Generalized Nash Equilibrium 81
5.2.6 Analysis of Generalized Nash Bargaining Solution 82
5.2.7 Proposed Algorithm . 83

5.2.7.1 Complexity Analysis . 85
5.2.8 Performance Evaluation . 85

5.2.8.1 Simulation Parameters 85
5.2.8.2 Benchmarks . 86
5.2.8.3 Performance Metrics . 87
5.2.8.4 Results and Discussions 88

5.3 Concluding Remarks . 89

6 Broadcast Data Traffic Management 91
6.1 System Architecture . 92
6.2 Proposed D2B Broadcast Scheme . 94

6.2.1 Justification for Using Single-Leader-Multiple-Follower Stackelberg
Game . 95

6.2.2 Utility Function of Each IoT Device 96
6.2.3 Utility Function of Each Switch . 97
6.2.4 Existence of Equilibrium . 98
6.2.5 Solution of Proposed D2B . 99

6.3 Proposed Algorithms for D2B . 100
6.4 Performance Evaluation . 102

xvii

Contents

6.4.1 Simulation Parameters . 102
6.4.2 Benchmarks . 102
6.4.3 Performance Metrics . 104
6.4.4 Results and Discussions . 106

6.5 Concluding Remarks . 107

7 Multicast Data Traffic Management 109
7.1 System Model . 110

7.1.1 Assumptions . 112
7.2 Dynamic Data Multicasting (D2M) Scheme 113

7.2.1 Game Formulation . 113
7.2.1.1 Justification for Single Leader Multiple Follower Stack-

elberg Game . 114
7.2.1.2 Utility Function of Controller 114
7.2.1.3 Utility Function of Each Switch 115

7.2.2 Existence of Nash Equilibrium . 116
7.2.3 Theoretical Analysis of D2M Scheme 117

7.3 Proposed Algorithms . 118
7.4 Performance Evaluation . 119

7.4.1 Simulation Parameters . 121
7.4.2 Benchmarks . 121
7.4.3 Performance Metrics . 122
7.4.4 Results and Discussions . 122

7.5 Concluding Remarks . 123

8 Multi-Tenant Flow-Table Partitioning 125
8.1 System Model . 126
8.2 BIND: The Proposed Blockchain-Based Flow-Table Partitioning Scheme . 128

8.2.1 Justification for Using Utility Game 129
8.2.2 Game formulation . 129
8.2.3 Replacement Eligibility Factor for Each Flow-Rules 130
8.2.4 Utility Function of Each Controller 131

8.3 Proposed Algorithms . 132
8.4 Performance Evaluation . 136

8.4.1 Simulation Parameters . 136
8.4.2 Benchmarks . 136
8.4.3 Performance Metrics . 137

xviii

Contents

8.4.4 Results and discussions . 138
8.5 Concluding Remarks . 138

9 Conclusion 141
9.1 Summary of the Thesis . 141
9.2 Contributions . 145
9.3 Limitations . 147
9.4 Future Scope of Work . 148

Publications 151

References 153

xix

List of Figures

1.1 Schematic Diagram of SD-DCN Architecture 2
1.2 Flowchart of Traffic Management in SD-DCN 7

3.1 State Diagram for Packet Flow in an OpenFlow Switch 22
3.2 Flowchart for Packet Flow through an OpenFlow Switch 24
3.3 Sent to Output Rate of an OpenFlow Switch 36
3.4 Packet Drop Rate of an OpenFlow Switch 37
3.5 Send to Controller Rate of an OpenFlow Switch 38
3.6 Average Queuing Delay of an OpenFlow Switch 39
3.7 Average Packet Processing Delay of an OpenFlow Switch 40

4.1 OpenFlow Switch with I Ingress Ports/Buffers 44
4.2 The Ingress Port/Buffer i of an OpenFlow Switch 45
4.3 Maximum Arrival Rate per OpenFlow Switch. 54
4.4 Maximum Waiting Time per OpenFlow Switch 54
4.5 Minimum Buffer Size per OpenFlow Ingress Port 55
4.6 Maximum Processing Time per OpenFlow Switch 56

5.1 Schematic Diagram of SD-DCN in the Presence of IoT-Devices 61
5.2 Volume of Data Traffic Processed by Switches with Varied Number of IoT

Devices . 70
5.3 Throughput of Switches with Varied Number of IoT Devices 71
5.4 Population Share of each Switch . 72
5.5 Issues in Heterogeneous Flow Management in SD-DCN 73
5.6 Workflow Diagram of FlowMan . 83
5.7 Per-Flow Throughput Analysis . 87
5.8 Network Throughput Analysis . 87
5.9 Per-Flow Delay Analysis . 88

xxi

List of Figures

5.10 Network Delay Analysis . 88

6.1 Schematic Diagram for Fat-Tree SD-DCN with IoT Devices 92
6.2 Average Bandwidth Allocation per Node 104
6.3 Total Bandwidth Utilization . 104
6.4 Average Delay of the Network . 105
6.5 Maximum Time Required for Broadcasting 100 Packets 105
6.6 Successful Nodes in Broadcasting . 106

7.1 Schematic Diagram of Fat Tree-based SD-DCN with IoT Devices 110
7.2 Performance Analysis of D2M . 122

8.1 Schematic Diagram of Multi-Tenant SDN 126
8.2 Comparison of BIND with Other Schemes 137

xxii

List of Tables

3.1 Simulation parameters . 35

4.1 System Specification . 53
4.2 Simulation Parameters . 53

5.1 Simulation Parameters . 69
5.2 System Specification . 69
5.3 Simulation Parameters . 86

6.1 Simulation Parameters . 103
6.2 Node Capacity Distribution . 103

7.1 Simulation Parameters . 119
7.2 Node Capacity Distribution . 121

8.1 System Specification . 136
8.2 Simulation Parameters . 136

xxiii

List of Algorithms

5.1 Algorithm for TROD Scheme . 67
5.2 Data Flow Management in FlowMan . 84
6.1 IoT Device Registration . 101
6.2 Optimal Throughput for Each IoT Device n 101
6.3 Optimal ps(·) for Each Switch s . 102
7.1 Optimal Flow Association Vector . 119
7.2 Optimal Data-rate for Each Flow . 120
8.1 FLE: Flow-Rule Election in BIND . 133
8.2 FRR: Flow-Rule Replacement in BIND . 134

xxv

List of Symbols and
Abbreviations

List of Symbols

N Number of OpenFlow switches in AMOPE

Bi The ith position of the OpenFlow queue

Fi The ith ingress flow-table

Fe The eth egress flow-table

pi Probability of having table-hit at the ingress flow-table Fi

ps Probability of packet getting forwarded to OpenFlow switch s

P (Fi) Probability of packet entering the ingress flow-table Fi

P (C) Probability of the packet getting forwarded to the controller

P (D) Probability of the packet getting dropped

P (O) Probability of the packet being in the output action state

I Number of ingress ports in an OpenFlow switch

Ki Buffer size of ingress port i

λi Mean packet arrival rate at ingress port i in OPUS

μi Mean packet processing rate at ingress port i

qi Probability of a packet getting forwarded to ingress buffer i

qm,i Probability of a packet getting forwarded to state m of ingress
buffer i

λm,i Mean packet arrival rate at state m of ingress port i

xxvii

List of Symbols and Abbreviations

μm,i Mean packet processing rate at state m of ingress port i

Ls,i Expected number of packets in the system for buffer i

Lq,i Expected number of packets in the buffer i

Lpr,i Probability that the processing unit of OpenFlow switch is busy

S Set of available switches

Rmax
s Maximum flow-rule capacity of switch s

A Set of available IoT devices

λi The data generation-rate of each data traffic flow i in TROD

ω Evolutionary iteration

σ Evolution controlling factor

φs(ω) Utility function of switch s in TROD

ys(ω) Population share of switch s

G(V, E) Flow network graph having V vertices and E edges

V L
I Set of IoT devices in the layer L

V L
S Set of switches in the layer L

Bij Bandwidth capacity of edge eij ∈ E

F E
n (t) Set of elephant flows generated by IoT device n

F M
n (t) Set of mice flows generated by IoT device n

FL(t) Number of flows in layer L of the network

Dk(t) Processing delay at switch k

Uk(·) Utility function of each switch k in FlowMan

As Set of IoT devices connected with switch s

T Set of time slots in a day

rmax
n Maximum data-rate of device n

rmin
n Minimum data-rate of device n

rn(t) Allocated data-rate of device n

ps(t) Pseudo cost coefficient of switch s

xxviii

List of Symbols and Abbreviations

M Chunks of data to be broadcasted

Un(·) Utility function of IoT device n in D2B

Ps(·) Utility function of switch s in D2B

sfs(t) Satisfaction factor of switch s in D2B

Fs(t) Set of heterogeneous flows associated with switch s

Crem
s Remaining capacity of switch s after allocating bandwidth to

the data center servers
D Set of data-servers in SD-DCN

ρs(t) Satisfaction factor of each switch s in D2M

Uc(·) Utility function of controller in D2M

Us(·) Utility function of each switch s in D2M

C Set of SDN controllers

Fc(Δ) Set of Packet-In messages received by controller c in duration Δ

P Set of priorities of the flows

ζ Sustainability of the network

Tf Tolerable waiting time for each flow-rule f

Ef Replacement-eligibility factor of each flow-rule f

Uc(·) Utility function of controller c in BIND

List of Abbreviations

SDN Software-Defined network

DCN Data Center Network

SD-DCN Software-Defined Data Center Network

IoT Internet of Things

mpps Million packets per second

mp Million packets

xxix

List of Symbols and Abbreviations

AP Access Point

TCAM Ternary content-addressable memory

QoS Quality of Service

kbps Kilo bytes per second

xxx

Chapter 1

Introduction

1.1 Introduction

In the last two decades, the data generated by different Internet of Things (IoT) appli-

cations has increased significantly [1]. The real-time processing, computation [2], and

analysis [3] of these generated data, which is termed as ‘big-data’, typically demand sup-

port from geographically distributed data centers. These well-connected data centers,

forming a data center network (DCN), try to optimize the load distribution among the

switches. Among different DCN architectures such as fat-tree, BCube, and DCell, we

consider the fat-tree DCN architecture for its popularity. Fat-tree DCN follows a hier-

archical architecture, where the switches at the aggregation-tier are controlled by the

routers at the core-tier. Additionally, the nodes at the edge-tier are controlled by the

switches at the aggregation-tier. However, the traditional DCN suffers from unbalanced

traffic loads and low utilization of network bandwidth, which, in turn, increase the energy

consumption of DCN and degrade the overall performance of DCN. On the other hand,

with the advancement of IoT technologies, different IoT devices are capable of generat-

ing and processing a huge amount of data. Hence, there is a need to integrate these IoT

devices into the DCN architecture. We argue that this cannot be done using traditional

1

1. Introduction

network architecture, as the traditional network devices such as switches and routers,

are not capable of handling different application-specific protocols and heterogeneous

IoT devices, due to vendor-specific infrastructure.

Figure 1.1: Schematic Diagram of SD-DCN Architecture

We envision that the aforementioned limitations can be resolved by integrating the

traditional DCN with the software-defined network (SDN) architecture, which is named

as ‘software-defined data center network (SD-DCN)’. SD-DCN takes the advantages of

SDN by decoupling the network control tasks from the tasks of packet forwarding and

processing [4], while dividing into two parts – the control plane and the data plane, as

shown in Figure 1.1. The control plane includes northbound and southbound application

programming interfaces (APIs). Presently, OpenFlow is the most popular southbound

2

1.1. Introduction

API that enables controller-switch interaction in SDN architecture. An OpenFlow switch

contains one or more flow tables to store packet forwarding rules. There are two types

of flow tables, namely ingress and egress flow tables. Each flow table contains a set of

flow entries. When a packet arrives at the ingress port of an OpenFlow switch, it is

matched with the flow entries of the first flow table and with the entries of subsequent

flow tables, if required. Matched flow entry provides a set of actions to be executed

for the corresponding packet. If no matching entry is found, the packet is dropped or

forwarded to the controller for the installation of a new rule depending on the network

policy. Each switch in SDN communicates with each external controller via an OpenFlow

channel. Additionally, in the new versions of OpenFlow, i.e., OpenFlow version 1.5.0 [5],

the presence of hardware and software switches are discussed.

Therefore, analysis of fat-tree DCN in the presence of OpenFlow switch-based SDN

is required in order to ensure high quality of services (QoS) of the SD-DCN such as

maximum throughput, minimum delay, and proper utilization of available bandwidth,

while ensuring minimum energy consumption. Additionally, the network performances

in case of data broadcasting and multicasting in SD-DCN in the presence of single and

multiple IoT data sources also need to be assessed in fat-tree SD-DCN. On the other

hand, there is a requirement to revisit the rule placement, controller and OpenFlow

switch placement in the context of SD-DCN. Hence, different schemes need to be designed

in order to address the aforementioned scenarios.

The rest of this Chapter is organized as follows. In Section 1.2, the scope of this

Thesis, while focusing on traffic engineering in SD-DCN, is presented. The objectives of

the work are also presented in this section. Thereafter, Section 1.3 presents the specific

contributions of this Thesis. Finally, we conclude this Chapter while mentioning the

organization of the Thesis in Section 1.4.

3

1. Introduction

1.2 Scope of the Work

We identify the necessity of designing different traffic engineering schemes for SD-DCN

in the presence of heterogeneous – elephant and mice – flows, in terms of analyzing the

system performance and ensuring network QoS, viz., high throughput and low delay. In

particular, we focus on theoretical performance analysis and data traffic management to

satisfy the QoS requirements of the heterogeneous flows in SD-DCN for IoT.

Theoretical Analysis of SDN System: In the existing literature, researchers pro-

posed different schemes and architectures for SDN, viz., [4,6–8], while considering Open-

Flow protocol and OpenFlow switches. The proposed approaches require a substantial

amount of execution time depending on the available hardware. This necessitates the

development of an analytical model to evaluate the performance of SDN architecture

before the actual implementation or simulation. Although, in the existing literature,

there are a few works that provide analytical models for performance analysis of an

OpenFlow-enabled network [9,10], none of these models define the probabilistic bounds

of the OpenFlow protocol version 1.5.0 [5]. Moreover, the proposed models do not eval-

uate significant network performance parameters such as throughput, average packet

processing time, average delay, and packet drop count. However, based on the existing

literature, we argue that the performance of the schemes, which are proposed for SDN,

highly depends on the optimum values of buffer size, packet arrival, and processing rates.

To the best of our knowledge, in the existing literature, there is no analytical model for

the evaluation of the minimum buffer size of an SDN switch. Additionally, there is a

need for evaluating the relations among the maximum arrival rate, the minimum pro-

cessing rate, and the minimum buffer size and to estimate the maximum packet waiting

time in an OpenFlow switch. These necessitate the design of an analytical model to

evaluate the minimum buffer size requirement of an OpenFlow switch for ensuring QoS

with minimum packet drop.

4

1.2. Scope of the Work

Data Traffic Management: Since SD-DCN is envisioned to handle heterogeneous

data traffic from IoT devices and data centres, efficient data traffic management in SD-

DCNs is a significant as well as challenging task. In the existing literature, researchers

focused on data traffic management in the context of DCN, viz. [11–14], and SDN,

viz. [6,15,16]. However, these existing schemes are not capable of ensuring balanced data

traffic in the presence of heterogeneous data flows. This is because, in the presence of

heterogeneous IoT flows, the nature of flows also need to be considered while distributing

the flows to ensure network QoS in terms of throughput and delay. Hence, we argue

that the existing schemes are not suitable to be used in the context of SD-DCNs. This

necessitates the design of efficient data traffic management schemes for SD-DCNs, in

order to ensure high network throughput and low network delay. Additionally, we aim

to ensure the optimal usage of network bandwidth and balanced data traffic in SD-DCN.

Furthermore, in the existing literature, most researchers considered the traditional

fat-tree DCN architecture, which ensures multiple equal-cost paths between any pair of

hosts located in different sub-trees [17] of DCN. Therefore, the traditional fat-tree DCN

architecture ensures high bandwidth inter-connectivity and path multiplicity. A signif-

icant problem in traditional DCN is the unbalanced traffic distribution. Uneven traffic

load causes inefficient data parallelization, inferior network performance, and degra-

dation of performance quality of the nodes [18]. Thus, researchers proposed different

scheduling techniques for data unicasting [19, 20] and multicasting [21] in traditional

DCN. However, none of the works addressed the issues of efficient broadcasting in DCN.

Hence, there is a need for a load balancing scheme for broadcasting in DCN, since, in the

presence of multiple IoT devices [22], broadcasting big-data in real-time is a challenge.

We refer to real-time data broadcasting in order to signify that a large amount of data,

generated by the set of IoT devices, is being broadcasted to each node at the edge-tier

of the fat-tree DCN. Hence, we plan to design an optimal bandwidth distribution and

data parallelization scheme for SD-DCN to improve the network performance, while con-

5

1. Introduction

sidering the presence of IoT devices. We consider that, in SD-DCN, the separation of

the control plane from the switches and the routers helps to improve the network per-

formance, while maximizing the throughput of the network and minimizing the overall

delay. Furthermore, in the presence of mobile IoT devices at the edge-tier, the problem

of big-data multicasting in the fat-tree DCN also needs to be revisited in the context

of SD-DCN, while ensuring the QoS of the network. In this case, we consider that the

data generated from the mobile IoT sources at the edge-tier needs to be multicasted to

the subset of available IoT devices at the edge-tier and the data centers. Hence, there

is a need for designing an optimal data multicasting scheme for fat-tree SD-DCN.

Multi-Tenant Flow-Table Partitioning: As SD-DCN follows a geographically dis-

tributed architecture, we consider the presence of multiple controllers, which reduces the

probability of single-point failure and ensures scalability. We studied that, in the existing

literature, a few works focused on flow-table partitioning in multi-tenant SDN [23–25].

However, these schemes overlooked the presence of heterogeneous flows, hence, these are

not suitable for multi-tenant SD-DCN. Therefore, throughput-optimal flow-table parti-

tioning in multi-tenant SD-DCN in the presence of heterogeneous IoT applications, while

minimizing flow-rule replacements and maximizing network sustainability, is a pressing

issue which needs to be addressed.

The flowchart of the work is presented in Figure 1.2. To summarize, the objectives

of the work are as follows:

1. Design of a probabilistic packet-centric performance analysis of OpenFlow switch.

2. Design of a buffer size evaluation scheme for ensuring QoS in SD-DCN.

3. Design of a throughput-optimal dynamic data traffic management scheme for SD-

DCN in the presence of heterogeneous flows.

4. Design of a delay-aware dynamic data traffic management scheme for SD-DCN in

6

1.3. Contributions

Figure 1.2: Flowchart of Traffic Management in SD-DCN

the presence of heterogeneous flows.

5. Design of a dynamic data broadcasting scheme in the presence of mobile IoT

sources in fat-tree SD-DCN.

6. Design of a dynamic data multicasting scheme in the presence of mobile IoT sources

in fat-tree SD-DCN.

7. Design of a flow-table partitioning scheme in distributed multi-tenant SD-DCN.

1.3 Contributions

The major contribution of this work are listed as follows:

1. We propose a queueing theory-based Markovian model, named AMOPE, to emu-

late the behavior of an OpenFlow system based on OpenFlow switch specification

7

1. Introduction

version 1.5.0 and evaluate the probabilistic bounds of different performance met-

rics such as probabilities of packets being dropped, and packets getting forwarded

to the output port and to the controller, when an incoming flow of packets passes

through the switch.

2. We propose an analytical scheme, named OPUS, for buffer bound evaluation of

an OpenFlow system. Additionally, we propose a queueing model based on C-

M/M/1/K/∞ queue for an OpenFlow system following the OpenFlow specification

version 1.5.0. Further, we calculate the minimum buffer size requirement of an

OpenFlow switch, theoretically.

3. We design a game theory-based dynamic data traffic management scheme for min-

imizing network delay and maximizing network throughput in SD-DCN in the

presence of heterogeneous IoT devices. We use an evolutionary game-theoretic

approach to decide the optimal data traffic volume which needs to be handled by

the switches, while considering that the data generation rate for each IoT device

is known a priori.

4. We introduce a QoS-aware stochastic data flow management scheme for SD-DCN

in the presence of heterogeneous flows. We use a generalized Nash bargaining game

to decide the Pareto optimal data rate to be allocated to each SDN switch, while

considering the heterogeneous flows within the one-hop network.

5. We propose a single-leader-multiple-followers Stackelberg game-based scheme, as a

pseudo-Cournot competition, for broadcasting big-data in fat-tree SD-DCNs with

mobile IoT devices. We divide the entire network into multiple blocks. In each

block, an individual switch acts as the leader, and the devices, which are connected

to the switch, act as followers. Each switch distributes the available capacity

among the connected IoT devices in order to achieve high performance with optimal

throughput and delay for big-data broadcasting in fat-tree SD-DCN.

8

1.4. Organization of the Thesis

6. We formulate a single-leader-multiple-followers Stackelberg game-based multicast

traffic management scheme to ensure high utilization of network capacity and effi-

cient load balancing in SD-DCN. We consider that the controller acts as the leader

and installs the flow-rules in the SDN switches. The controller also decides the

source node of the flow for each destination. On the other hand, the SDN switches,

which act as the followers, decide their respective strategies, non-cooperatively.

The followers help the controller to manage the network properly by deciding the

amount of bandwidth to be allocated for each flow and optimizing the usage of

overall capacity.

7. We propose a blockchain-based flow-table partitioning scheme for distributed multi-

tenant SDN. Using blockchain, we ensure that the controllers are synchronized

and cooperative in nature. We use utility game to propose a distributed algorithm

for flow-rule election, where each controller distributively identifies the flow-rules’

replacement eligibility factors, and elects a single flow-rule for replacement. There-

after, we consider another utility game-based centralized algorithm for flow-rule

replacement to be performed by the controller receiving the Packet-In message.

1.4 Organization of the Thesis

The rest of the Thesis is organized as follows:

• Chapter 2 – Literature Survey: The related works on performance analysis

in SDN and resource management schemes in SDN and DCN are surveyed in this

Chapter.

• Chapter 3 – Theoretical Performance Analysis of SDN Switches: In this

Chapter, the performance of packet flow through an OpenFlow switch in SD-DCN

is analyzed to define the probabilistic bounds of the performance metrics of the

OpenFlow switch.

9

1. Introduction

• Chapter 4 – Buffer Size Analysis of SDN Switches: In this Chapter, the

optimum buffer size of an OpenFlow switch in order to ensure QoS in OpenFlow

systems is presented.

• Chapter 5 – QoS-Aware Data Traffic Management: The optimal data traffic

management schemes are presented in this Chapter, while considering different QoS

parameters such as network-throughput and delay.

• Chapter 6 – Broadcast Data Traffic Management: This Chapter presents

data traffic management schemes for IoT data broadcasting in fat-tree SD-DCN.

• Chapter 7 – Multicast Data Traffic Management: This Chapter presents

data traffic management schemes for multicasting in fat-tree SD-DCN in the pres-

ence of mobile IoT devices.

• Chapter 8 – Multi-Tenant Flow-Table Partitioning: In this Chapter, a

blockchain-based flow-table partitioning scheme, named BIND, for distributed

multi-tenant SD-DCN is presented.

• Chapter 9 – Conclusion: This Chapter contains the summary of the Thesis

while citing a few research directions.

10

Chapter 2

Literature Survey

In this Chapter, we survey the related literature on traffic engineering schemes for DCNs

and SDNs in detail. The existing literature related to traffic engineering of SD-DCNs is

divided into two categories — theoretical analysis of SDNs, and resource management

in SDNs and DCNs.

The rest of the chapter is organized as follows. Section 2.1 presents the related

performance analysis schemes proposed for SDNs in the existing literature, while Sections

2.2 and 2.3 discuss the existing literature on resource management schemes in SDNs and

DCNs, respectively. Finally, Section 2.4 concludes the chapter.

2.1 Performance Analysis of SDNs

Although, in existing literature, the researchers explored different aspects in the context

of OpenFlow and SDN, few works addressed the performance analysis of an OpenFlow-

enabled SDN architecture. Jarchel et al. [10] modeled the OpenFlow architecture as

an M/M/1 forward queueing system and an M/M/1-S feedback queueing system. This

model measures the delay at an OpenFlow switch and estimates the total sojourn time

of a packet and the probability of dropped packets. Additionally, this model studies

the probability of a packet getting blocked by a heavily loaded controller. This work is

11

2. Literature Survey

based on OpenFlow version 1.0.0, where each switch has a single flow table. The authors

considered TCP traffic instead of UDP. Also, they considered that only the first packet

header of a new flow is sent to the controller. The authors assumed that the queue length

of a switch is infinite. However, according to the OpenFlow version 1.5.0 [5], each switch

has multiple flow tables (both ingress and egress) with more number of match fields.

In another work, Azodolmolky et al. [9] modeled SDN based on network calculus. This

model analyses network performance from an SDN controller’s perspective and depicts

controller-switch interactions. In another work, Metter et al. [16] formulated an M/M/∞
queuing system-based analytical model for analyzing a trade-off between signaling rate

and switch table occupancy and calculated an optimum flow-rule time-out period.

Eager and Sevcik [26] studied the performance bounds for single-class queuing net-

works with fixed rates and delay service centers using mean-value analysis. The authors

claimed that the performance bounds ensure the accuracy of the model. There is a

need for similar probabilistic analytical models to evaluate the performance bounds for

OpenFlow switch in SDN. On the other hand, Garrido et al. [27] focused on a Marov

chain-based semi-analytical model for evaluating the performance of sparse network cod-

ing. The authors used an absorbing Markov process for the work. Bergstrom et al. [28]

proposed a Markov chain-based analytical model for an optical shared-memory packet

switch. The authors evaluated the throughput and probability of packet loss of the sys-

tem. Similarly, for an OpenFlow switch, there is a need for packet-centric analysis and

for evaluating the probabilistic bounds of the performance metrics. Additionally, Bianco

et al. [29] compared the performance of OpenFlow switching with that of link-layer Eth-

ernet switching and network layer IP routing. The authors used the packet latency and

the forwarding throughput as major performance indicators.

On the other hand, Rich and Schwartz [30] studied the buffer limitation in computer-

communication networks, while exploring the advantages of buffer sharing among the

communication nodes. Kekre and Saxena [31] proposed an analytical queuing model

12

2.2. Resource Management in SDNs

for an integrated digital voice-data system with synchronous time-division multiplex-

ing. The authors analyzed different performance metrics such as overflow probabilities,

buffer size, and expected queueing delay due to buffering. Luan [32] analyzed buffer

behavior in DCNs. Average buffer size in Intermittently Connected Networks (ICNs)

was estimated by Cello et al. [33]. In another paper, Manoj et al. [34] studied the perfor-

mance of a buffer-aided multi-hop relaying system using a Markov chain. The authors

evaluated analytical expressions for the steady-state probability vector for a three-hop

buffer-aided system. Asheralieva and Miyanaga [35] presented an analytical study of

optimum buffer size requirement, while estimating the buffer status information for a

Long Term Evolution-Advanced (LTE-A) network. Jagannathan et al. [36] estimated the

queue-length of a system with a single server and two parallel queues — heavy-tailed

and light-tailed traffic.

2.2 Resource Management in SDNs

Concerning the improvement of OpenFlow-enabled networks, in the existing literature,

Reitblatt et al. [37] addressed the issues of consistent network updates. The authors

proposed a set of abstract operations to change the network configuration, such that,

each incoming packet follows either the old configuration or the new one. Bera et al. [38]

studied different aspects of resource allocation in SDN for IoT. Additionally, Katta

et al. [7] provided a consistent network update mechanism that addresses the trade-

off between rule-space overhead and update-time. Congdon et al. [6] proposed a per-

port optimization technique to reduce switch latency and power consumption. Saha et

al. [39] proposed a flow-rule aggregation scheme for SDN, while focusing on the problem

of over-subscription. The authors used a key-based aggregation policy to reduce the

number of flow rules. In another work, Maity et al. [40] proposed a tensor-based flow-

rule aggregation scheme in SDN. Meiners et al. [8] proposed a technique to compress

flow-table entries and increase storage space in an OpenFlow switch. Huang et al.

13

2. Literature Survey

[41] proposed a rule multiplexing scheme to reduce the usage of TCAM memory while

maintaining QoS constraints. The authors formulated a joint optimization problem

while considering route engineering and rule placement. In another work, Sadeh et

al. [42] proposed a scheme, named Bit Matcher, to reduce the TCAM memory usage for

a given set of flow-Traffic-aware rules.

Rottenstreich et al. [43] proposed a traffic splitting scheme for switches while con-

sidering the heterogeneity of the network paths or servers and the limited capacity of

the flow-tables. Wang et al. [44] proposed an SDN-based network storage while having

no physical storage. Li et al. [45] proposed to store the packet header instead of the en-

tire packet in the buffer of an SDN switch for reducing the communication overheads of

SDN. Hayes et al. [46] studied the traffic-classification in SDN. In another work, Mogul et

al. [15] used hashing to reduce flow table lookups in an OpenFlow switch. Saha et al. [47]

proposed a QoS-aware routing scheme for SDN, while maximizing end-to-end delay. The

authors considered different types flows in terms of delay- and loss-sensitivity. Bera et

al. [48] proposed an SDN-based wireless sensor network for provisioning application-

aware service in IoT. Additionally, Misra et al. [49] designed a protocol selection scheme

for SDN-based wireless sensor networks. In this work, initially, the authors selected the

most appropriate protocols for the situations and executed the actual deployment in

the next phase. In another work, Bera et al. [50, 51] studied a mobility-aware SDN and

attempted to maximize the overall network performance.

Agarwal et al. [52] studied traffic handling in SDN. The authors showed that hav-

ing a centralized view of the network, the controller is capable of reducing the delay

and packet loss in data traffic. Tseng et al. [53] studied the problem of path stability in

hybrid SDN. The authors calculated the routes locally to reduce computational complex-

ity, thereafter, used a centralized scheme to re-evaluate the routes for gaining stability.

Misra and Bera [54] proposed a task offloading scheme for SDN-based fog network. The

authors minimized the delay in task offloading and computation, while selecting the op-

14

2.2. Resource Management in SDNs

timal number of fog nodes. Misra and Saha [55] extended the aforementioned work of

task offloading in SDN-based fog networks, while considering multi-hop network flows.

Moradi et al. [56] proposed an efficient traffic engineering scheme, named DRAGON,

for SDN-based ISP networks having different types of network links and switches. In

DRAGON, the flow optimization problem is broken down into sub-tasks having different

objectives and the sub-tasks are executed in parallel to reduce complexity. In another

work, Allybokus et al. [57] proposed a fair resource allocation scheme in the presence

of multiple network paths in a distributed SDN scenario, using the alternating direction

method of multipliers. Sanvito et al. [58] proposed a scheme for deciding the time frame

to reconfigure flow-tables, while considering overlapping data flow paths.

Mondal et al. [59] proposed a scheme to ensure high throughput in SDN while assum-

ing that the volume of data to be generated is known a priori. The authors optimally

distributed the traffic load among the switches and ensured high network throughput.

Tahaei et al. [60] presented an SDN-based flow management scheme for data center

networks with multiple controllers and selected an optimal number of switches. In an-

other work, Görkemli et al. [61] proposed a novel distributed dynamic control plane

architecture in which the switches communicate with their controllers through a virtual

overlay network. The authors also proposed the introduction of a “control flow table" to

manage the dynamic control plane traffic. Another dynamic traffic engineering scheme

was proposed by Bera et al. [62] in which the authors attempted to reduce the control

overheads by reducing the number of messages sent to the controller. The authors pro-

posed a greedy heuristics-based approach to determine the optimal number of candidate

switches (with higher TCAM) necessary to reduce the involvement of the controller.

Here, we discuss the existing schemes focusing on flow-rule processing in SDN. Mao

et al. [63] proposed a Convolutional Neural Networks (CNNs)-based intelligent traffic

management scheme. The authors considered that the controller has high computational

resources. Rottenstreich et al. [64] studied the shared multi-core processing scheme and

15

2. Literature Survey

evaluated a trade-off between the number of allocated cores and the associated delay in

the context of network virtualization. In another work, Rottenstreich and Tapolcai [65]

proposed a limited-size classifier set to accommodate the flow-rules in limited TCAM

memory. Singh et al. [66] proposed a hash-based flow-table to reduce the flow-table

lookups. In another work, Aujla et al. [67] proposed a traffic flow management scheme

in SDN.

Furthermore, Bera et al. [68] studied the problem of assigning controllers for each

flow in SDN using a dynamic stable-matching game. Blenk et al. [23] presented a survey

of multi-tenant SDN and divided the existing literature into two categories, such as,

hard and soft partitioning of flow-tables. In another work, Caria et al. [24] proposed

an SDN topology partitioning scheme by introducing SDN border nodes, which are

responsible for ensuring connectivity among two controllers. The authors considered

that each controller has access to a mutually exclusive set of SDN switches. Lin et

al. [25] proposed a scheme for multi-tenant SDN while considering the presence of a

proxy controller.

2.3 Resource Management in DCNs

In existing literature, researchers studied Fat-tree DCNs [18, 69]. Fat-tree DCN follows

a hierarchical architecture. The switches at the aggregation-tier are controlled by the

routers at the core-tier. Additionally, the nodes at the edge-tier are controlled by the

switches at the aggregation-tier. We divide the existing literature on the data transmis-

sion in DCN into two categories — (1) broadcasting and (2) unicasting and multicasting.

Chen et al. [11] surveyed the challenges in generation, acquisition, storage, and pro-

cessing of data. They also mentioned various applications involving big-data such as

– enterprise management, IoT, and social networks, while considering different medical

applications and smart grid. Muntean et al. [12] proposed a quality-oriented adaptation

scheme for ensuring delivery of high bit-rate multimedia streams to the users using the

16

2.3. Resource Management in DCNs

IP network efficiently. In another review article, Jagadish et al. [1] mentioned different

challenges for understanding a huge amount of data while citing a case study about

cleaning, analyzing, and interpretation of data or information. Wu et al. [13] studied

a big-data broadcasting scheme for distributed systems. The authors considered that

the source node has the maximum bandwidth or capacity, and modeled the network as

a lock-step broadcast tree (LBST). Yu et al. [14] surveyed different networking aspects

of big-data, such as, distributed and heterogeneous networks. The authors also studied

different schemes on big-data representation. On the other hand, Liu et al. [70] proposed

a neighbor-based probabilistic broadcast scheme for data distribution among the mobile

IoT devices. The authors determined the re-broadcast probability, while considering the

neighborhood nodes and the adaptive connectivity factor.

Lau et al. [71] proposed an Audience-Driven Live TV Scheduling (ADTVS) frame-

work using 4G LTE broadcast in order to improve the traditional live television broad-

casting system. Zarb and Debono [72] proposed a scalable free-viewpoint television

broadcast architecture for long-term evolution cellular networks. Lakhlef et al. [73] pro-

posed agent-based broadcast protocols for mobile IoT devices, while considering parallel

data broadcasting with a limited channels. Based on the availability of communica-

tion channels, the network is partitioned into several groups, where each group has a

group-leader, i.e., agent. Ahlgren et al. [74] surveyed data transfer in the context of

Information-Centric Networking (ICN). Unlike DCN, in ICN, the data files are accessed

by the user by their name or identifier, instead of the name of the host device. On the

other hand, in DCN, the user accesses the data file by the host identifier. Hence, we ar-

gue that the schemes designed for ICN are not applicable to data broadcasting in DCN.

Trestian et al. [75] studied a network selection scheme, named E-PoFANS, for multime-

dia delivery in ad-hoc networks. Paul et al. [76] studied the optimal server provisioning

problem in DCN and proposed two different schemes — for minimizing operational cost

and for minimizing capital and operational cost, jointly, based on a discrete-time model.

17

2. Literature Survey

A few research works exist on data unicasting and multicasting in fat-tree based

DCNs. Guo and Yang [21] studied multicasting in DCNs with fat-tree topology. The

authors claimed that their work is one of the pioneering work which explores multicas-

ting in fat-tree based DCNs. Iyer et al. [77] proposed a multicast routing scheme by

reducing the routing tree for a group. Raiciu et al. [78] proposed a multipath transmis-

sion control protocol (MPTCP) in DCN for data unicasting. They showed that, using

MPTCP, the workload is balanced properly in fat-tree topology-based DCNs. Zhu et

al. [79] designed a multicasting scheme for DCN, while considering the packet processing

and flow replication as bottlenecks. Chiu and Lau [80] proposed a scheme for efficient

multicast and broadcast services using transmitter-side channel state information. In

another work, Al-Fares et al. [81] studied a dynamic flow scheduling (HEDERA) scheme

for data multicasting, while aggregating network resources. They claimed that HED-

ERA performs 113% better than static load balancing in DCNs. Curtis et al. [82] also

studied multicasting traffic pattern in DCNs.

2.4 Concluding Remarks

In this Chapter, we reviewed several relevant research works representing some of the

emerging trends in theoretical analysis and resource allocation in SDN and DCN, where

data traffic management plays an important role. For instance, traditional DCN tries to

optimize the load distribution among the switches. However, it suffers from unbalanced

traffic load and low utilization of network bandwidth, which, in turn, increases energy

consumption and degrades the overall performance of the DCN. Additionally, the tradi-

tional network devices, such as switches and routers, are not capable of handling different

application-specific protocols and heterogeneous IoT devices, due to vendor-specific in-

frastructure. On the other hand, the existing works on SDN focused on routing and the

efficient utilization of TCAM, however, none of these works considered the presence of

heterogeneous flows or application in SDN. Similarly, none of the works in DCN con-

18

2.4. Concluding Remarks

sidered the heterogeneity in applications. Hence, in the context of SD-DCN, the data

traffic management schemes need to revisited, while considering the presence of hetero-

geneous applications or flows. Moreover, the analytical models proposed for SDN in

the existing literature considered the complexity of the flow management. However, the

performance analysis and evaluation of different physical parameters, such as data flow

rates and buffer size, are not explored in the existing literature, which necessitates the

design of theoretical models to address the aforementioned problems. Furthermore, the

handling of data traffic in distributed multi-tenant SD-DCN is also not explored in the

existing literature.

19

Chapter 3

Theoretical Performance Analysis

of SDN Switches

In this Chapter, we present a Markovian model-based analytical scheme, named AMOPE,

to analyze the behavior of an OpenFlow switch based on its specification version 1.5.0 [5].

In AMOPE, we consider that each controller is connected to multiple switches in SD-

DCNs. For each switch, we estimate the performance of the switch using the metrics

such as packet drop and throughput, while considering packet queuing, ingress and egress

processing steps. Considering that the OpenFlow switch follows packet-level services, in

AMOPE, the switch takes each packet as an individual entity, despite taking flow-specific

data. We present a Markovian analysis of packet flow through an OpenFlow switch using

Markov chain [83,84]. According to the OpenFlow switch specification version 1.5.0, we

consider that such a switch has three parts — (a) the switch queue, (b) ingress process-

ing unit, (c) and egress processing unit. Additionally, to design AMOPE, we assume

that — (1) each mouse flow comprises a few number of packets; (2) the packet arrival

process follows a Poisson distribution; and (3) the packet inter-arrival time follows an

exponential distribution.

This Chapter is organized as follows. We describe the state diagram and the prob-

21

3. Theoretical Performance Analysis of SDN Switches

abilistic analysis of each part of an OpenFlow switch in Sections 3.2 and 3.3, while

providing a justification for using Markov model in Section 3.1. Section 3.4 discusses the

performance evaluation of packet-centric analysis of OpenFlow switch using AMOPE.

Finally, Section 3.5 concludes this Chapter.

Figure 3.1: State Diagram for Packet Flow in an OpenFlow Switch

3.1 Markovian Model: The Justification

We studied the behavior of an OpenFlow switch using Markovian chain [85, 86], as it

follows the following Markov properties:

1) Each packet is processed individually, i.e., the behavior of an OpenFlow switch is

memoryless.

2) Packet processing in an OpenFlow switch is a stochastic process having Markov

property P (xn+1|Xn, Xn−1, Xn−2, · · · , X1) = P (xn+1|Xn), where Xn, Xn−1, and Xn+1

are the present, immediate past, and future state of a Markovian process, respectively.

22

3.2. State Diagram

3.2 State Diagram

We consider that when a packet is sent from the controller to the OpenFlow switch, the

packet gets queued, initially, before entering the ingress processing unit of an OpenFlow

switch, as shown in Figure 3.2. The switch has a queue of length of size (Q+1), and each

ith position of the OpenFlow queue is denoted as a separate state Bi, where 0 ≤ i ≤ Q,

as shown in Figure 3.1. If the packet gets queued at position i, it waits for a finite

duration of time in order to reach the 0th position of the queue, B0. Thereafter, the

packet enters the ingress processing unit of the switch and searches for a match at the

0th ingress flow-table, F0. Hence, a table-hit may be possible, signifying a match being

found in the table, or a table-miss, where no match is found. In the case of table-hit,

the OpenFlow switch executes one of the following instructions:

1. The packet goes to another ingress table Fi, where (i > 0).

2. The action mentioned in the action field of the flow entry gets executed.

On the other hand, in the case of table-miss, the packet follows one of the following

possibilities:

1. Pass to another ingress flow-table Fi, where (i > 0), according to the table-miss

flow entry.

2. Pass to the controller, according to the table-miss flow entry.

3. Drop the packet according to the table-miss flow entry.

4. Drop the packet if there is no table-miss flow entry.

After reaching the ingress flow-table Fi, the packet is matched against the flow-table

entries. If there is table-hit, either the packet gets forwarded to another ingress flow-

table Fj , where j > i, or instructions are executed according to the flow-table entry, as

23

3. Theoretical Performance Analysis of SDN Switches

Figure 3.2: Flowchart for Packet Flow through an OpenFlow Switch

discussed earlier. On the other hand, in case of table-miss, the packet gets forwarded

either to another ingress flow-table Fj , where j > i, or to the controller, according to

the table-miss flow entry, or gets dropped, as mentioned earlier.

After the processing of the packet at the ingress processing unit, and the output

action is taken according to the table-hit at the ingress flow-table, if the egress flag is

set for that packet, the packet enters the egress processing unit, as shown in Figure 3.2.

Additionally, as shown in Figure 3.1, a packet can enter the egress processing unit from

24

3.3. Probabilistic Analysis

any of the available ingress flow-tables. Once the packet enters the egress processing

unit, the packet gets forwarded to the egress flow-table Fe, as shown in Figures 3.2 and

3.1. Hence, the packet is matched against the flow-table entries, as mentioned for the

ingress processing unit. For egress table-hit at (e + i)th egress flow-table, Fe+i, where

0 ≤ i < m, the packet either gets forwarded to another egress flow-table Fe+j , where

i < j ≤ m, or forwarded for executing action set as mentioned in the action field of the

matched entry. On the other hand, in the case of table-miss, one of the following options

is executed:

1. The packet gets forwarded to the next egress flow-table Fe+j , from the egress

flow-table Fe+i, where i < j ≤ m, according to the egress table-miss flow entry.

2. The packet is sent to the controller, according to the egress table-miss flow entry.

3. The packet is dropped, according to the egress table-miss flow entry.

4. The packet is dropped if there is no egress table-miss entry.

If the packet is sent to the controller, the controller handles the packet and forwards

the packet to the available SDN switches, while either making modifications in the flow-

table entries or rerouting the packet. Otherwise, the controller also has a provision to

drop the packet.

3.3 Probabilistic Analysis

We consider that SD-DCN comprises of a single controller unit and multiple OpenFlow

switches. In this work, we focus on packet flow through an OpenFlow switch. Hence,

we consider that the probability of a packet getting forwarded from the controller to the

specific switch having queue length (Q+1), where indexing starts from the 0th position,

is p′. If there are N number of OpenFlow switches in the network, we consider that

the probability of the packet getting forwarded to OpenFlow switch s, where 1 ≤ s ≤

25

3. Theoretical Performance Analysis of SDN Switches

N, is defined as ps. The packets get forwarded to anyone of the available OpenFlow

switches without any preference. Therefore, the packet has an equal probability of

getting forwarded to anyone of the OpenFlow switches. We have:

ps = p′ = 1
N

, ∀s (3.1)

After getting forwarded by the controller, the packet gets queued at the switch buffer.

Considering that the queue length is (Q + 1), and the packet getting queued at any

position of the buffer is unbiased, i.e., equally probable, we get:

P (Bi|C) = p′

Q + 1 , where 0 ≤ i ≤ Q (3.2)

where Bi defines the ith position of the buffer, C denotes the SDN controller, and

P (Bi|C) denotes the probability of the packet getting forwarded to the buffer Bi from

the controller C. After getting queued at buffer Bi, the packet gets forwarded to the

next position of the OpenFlow queue, Bi−1, sequentially. Hence, we get:

P (Bi−1|Bi) = 1, where 0 < i ≤ Q (3.3)

After reaching the 0th position of the queue, the packet enters the ingress processing

unit of the OpenFlow switch. The packet is forwarded to the ingress flow-table having

index 0, initially. Hence, the probability of the packet getting forwarded from the state

B0 to the first ingress flow-table F0 is always unity. Mathematically,

P (F0|B0) = 1 (3.4)

We consider that the packet is at the ingress flow-table Fi, the packet gets matched

against the flow-table entries of Fi. The packet finds either table-hit or table-miss, as

discussed in Section 3.2. We consider that the probability of having table-hit at the

26

3.3. Probabilistic Analysis

ingress flow-table Fi is pi. Hence, the probability of table-miss at the ingress flow-table

Fi is (1− pi). Additionally, we consider that in case of table-hit at ingress flow-table Fi,

where 0 ≤ i < n, there are three equally probable events, i.e., considered to be unbiased

events, — (1) the packet gets forwarded to the egress flow-table Fe, (2) the packet is

handled according to the output action, and (3) the packet gets forwarded to any of the

next ingress flow-tables, Fj , where i < j ≤ n. Hence, we get:

P (Fe|Fi) + P (O|Fi) +
∑

j,n≥j>i

P (Fj |Fi, table-hit) = pi (3.5)

where P (Fe|Fi), P (O|Fi), and P (Fj |Fi, table-hit) define the probability of the packet

getting forwarded to the egress table Fe, the probability of packet executed according to

the output action, and the probability of the packet getting forwarded to flow-table Fj ,

when there is table-hit, respectively. In case of table-miss at the ingress flow-table Fi,

where 0 ≤ i < n, there are three equally probable unbiased events — (1) the packet gets

forwarded to any of the next ingress flow-tables, Fj , where i < j ≤ n, (2) the packet

gets forwarded to the SDN controller, and (3) the packet gets dropped. We get:

∑
j,n≥j>i

P (Fj |Fi, table-miss) + P (C|Fi) + P (D|Fi) = (1 − pi) (3.6)

where P (Fj |Fi, table-miss), P (C|Fi), and P (D|Fi) define the the probability of the

packet getting forwarded to the flow-table Fj , when there is table-miss, the probability

of packet getting forwarded to the controller, and the probability of the packet get-

ting dropped, respectively. Therefore, the probability of the packet getting forwarded

to a next ingress flow-table Fj , where i < j ≤ n, i.e., P (Fj |Fi), where P (Fj |Fi) =

P (Fj |Fi, table-hit) + P (Fj |Fi, table-miss), and the probability of the packet getting

forwarded to the egress flow-table Fe, i.e., P (Fe|Fi), are as follows:

27

3. Theoretical Performance Analysis of SDN Switches

P (Fj |Fi) = pi

3(n−i) +
1−pi

3(n−i)

= 1
3(n−i) , 0 ≤ i < n, and j > i

(3.7)

P (Fe|Fi) =
pi

3 , 0 ≤ i < n (3.8)

The packet cannot be forwarded to the ingress flow-table Fj from the ingress flow-

table Fi. Hence, the probability of the aforementioned event is given as:

P (Fj |Fi) = 0, 0 ≤ i ≤ n, and j ≤ i (3.9)

If the packet finds a table-hit at the flow-table Fn, there are two equally probable

events without biasness — (1) the packet get forwarded to the eth egress flow-table, Fe,

and (2) the packet is handled according to the output action. Therefore, the probability

that the packet gets forwarded to the egress flow-table Fe from the ingress flow-table

Fn, is given as:

P (Fe|Fn) =
pn

2 (3.10)

where pn is the probability of getting a table-hit at the ingress flow-table Fn. Similar

to the ingress flow-tables, at the egress flow-table Fe+i, we consider that the probability

of getting a table-hit is defined as pe+i, which depends on two equally probable unbiased

outcomes — (1) the packet getting forwarded to any next egress flow-table Fe+j , and

(2) the packet is handled according to the output action. On the other hand, in case of

table-miss with probability (1 − pe+i), which is also addition of three equally probable

events, i.e., without having biasness, such as (1) the packet gets forwarded to any next

egress flow-table, Fe+j , where i < j ≤ m, (2) the packet gets forwarded to the SDN

controller, and (3) the packet gets dropped. Hence, the probability of the packet getting

forwarded to the next egress flow-table Fe+j from the egress flow-table Fe+i is given

28

3.3. Probabilistic Analysis

as P (Fe+j |Fe+i) = P (Fe+j |Fe+i, table-hit) + P (Fe+j |Fe+i, table-miss). Therefore,

P (Fe+j |Fe+i) is equated as follows:

P (Fe+j |Fe+i) = pe+i

2(m−i) +
1−pe+i

3(m−i)

= 2+pe+i

6(m−i) , 0 ≤ i < m, and j > i
(3.11)

On the other hand, similar to the ingress flow-table rules, the packet cannot flow to

any egress flow-table with lower index. Therefore, the probability of the packet getting

forwarded to the egress flow-table Fe+j to the egress flow-table Fe+i, where j ≤ i, is

given as follows:

P (Fe+j |Fe+i) = 0, 0 ≤ i ≤ m, and j ≤ i (3.12)

From Figure 3.1, we get that the packet may reach to the output action state, denoted

as O, form the states — any of the ingress flow-tables, Fi, where 0 ≤ i ≤ n, and any of

the egress flow-table, Fe+i, where 0 ≤ i ≤ m, when there is a table-hit. We define the

probability, P (O|Fi), of the packet reaching to output action state from any flow-table

Fi, i.e., either ingress or egress flow-table, is given as follows:

P (O|Fi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

pi
3 , if 0 ≤ i < n

pi
2 , if i = n

pe+i

2 , if 0 ≤ i < m

pe+i, if i = m

(3.13)

On the other hand, from Figure 3.1, we observe that the packet may get dropped,

where the state represented as D, form the states such as any of the ingress flow-tables,

Fi, where 0 ≤ i ≤ n, and any of the egress flow-tables, Fe+i, where 0 ≤ i ≤ m, when

there is a table-miss. We define the probability, P (D|Fi), of the packet reaching to

packet drop state from any flow-table Fi is given as follows:

29

3. Theoretical Performance Analysis of SDN Switches

P (D|Fi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1−pi
3 , if 0 ≤ i < n

1−pi
2 , if i = n

1−pe+i

3 , if 0 ≤ i < m

1−pe+i

2 , if i = m

(3.14)

Similarly, from Figure 3.1, we get that the packet may get forwarded to the SDN

controller, where the state represented as C, form the states such as any of the ingress

flow-tables, Fi, where 0 ≤ i ≤ n, and any of the egress flow-tables, Fe+i, where 0 ≤ i ≤ m,

when there is a table-miss. We define the probability, P (C|Fi), of the packet reaching

to packet drop state from any flow-table Fi is given as follows:

P (C|Fi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1−pi
3 , if 0 ≤ i < n

1−pi
2 , if i = n

1−pe+i

3 , if 0 ≤ i < m

1−pe+i

2 , if i = m

(3.15)

Based on aforementioned state transition conditional probability, we calculate the

probability of the packet to be any of the aforementioned state. Based on Equations

(3.2) and (3.3), probability of the packet to be at the ith position of the queue, Bi, where

0 ≤ i ≤ Q, i.e., P (Bi), is defined as follows:

P (Bi) = P (Bi|C)P (C) + P (Bi|Bi+1)P (Bi+1)

=
Q∑

j=i

p′
Q+1 = p′

(
1 − i

Q+1

)
, 0 ≤ i ≤ Q

(3.16)

where P (C) defines the probability of packet to be at SDN controller. We consider

that P (C) = 1. The probability of packet entering the ingress flow-table F0, P (F0), is

calculated as follows, based on Equations (3.4) and (3.16):

P (F0) = P (F0|B0)P (B0) = p′ (3.17)

30

3.3. Probabilistic Analysis

The packet reaches the ingress flow-table F1, if and only if the packet gets forwarded

by the ingress flow-table F0. Hence, from Equations (3.7) and (3.17), the probability of

packet being in the ingress flow-table F1, P (F1), is defined as follows:

P (F1) = P (F1|F0)P (F0) =
p′

3n
(3.18)

Additionally, from Equations (3.7), (3.17), and (3.18), the probability of the packet

being in the ingress flow-table Fi, P (Fi), where 0 < i ≤ n, is calculated as follows:

P (Fi) =
i−1∑
j=0

P (Fi|Fj)P (Fj)

= p′
3n

i−1∏
j=1

[
1 + 1

3(n−j)

]
, 1 < i ≤ n

(3.19)

From Figure (3.1), we observe that the packet can reach to egress flow-table Fe from

any of the ingress flow-tables, Fi, where 0 ≤ i ≤ n. Hence, based on Equations (3.8),

(3.10), and (3.19), the probability of the packet to be at the egress flow-table Fe, P (Fe),

is defined as in Equation (3.20).

P (Fe) =
n∑

j=0
P (Fe|Fj)P (Fj)

= p′
3

(p1
3n + p0

) n−1∑
i=2

(
pi
3

p′
3n

i−1∏
j=1

[
1 + 1

3(n−j)

])
+ pn

2
p′
3n

n−1∏
j=1

[
1 + 1

3(n−j)

] (3.20)

Additionally, using Stirling’s approximation formula on Equation (3.20), we get the

upper and lower bound of P (Fe) as defined in Equation (3.21).

[1
9n

pp′ + 10
27pp′ − 1

54n
pp′ lnn

]
< P (Fe) <

[1
9n

pp′ lnn + 7
18pp′ + 1

9n
pp′

]
(3.21)

From Figure 3.1, we observe that the packet can only reach the egress flow-table

Fe+1 from the egress flow-table Fe. Hence, using Equations (3.11) and (3.20), we get

31

3. Theoretical Performance Analysis of SDN Switches

the probability of the packet to be in egress flow-table Fe+1, P (Fe+1), is as follows:

P (Fe+1) = P (Fe+1|Fe)P (Fe)

=
(

2+p
6m

)
P (Fe)

(3.22)

Using Equations (3.11), (3.20), and (3.22), we define the probability of the packet

being at egress flow Fe+i, P (Fe+i), where 1 < i ≤ m, as follows:

P (Fe+i) =
i−1∑
j=0

P (Fe+i|Fe+j)P (Fe+j)

= (2+p)
6m P (Fe)

i−1∏
j=1

[
1 + 2+p

6(m−j)

]
, 1 < i ≤ m

(3.23)

Using Stirling’s approximation formula on Equation (3.23), we get the upper and

lower bounds of P (Fe+i), as follows:

(2 + p)2
36m

P (Fe) ln
(

m

m − i + 1

)
< P (Fe+i) ≤ (2 + p)

6m
P (Fe)

[
m

m − i + 1

](2+p
6)

(3.24)

3.3.1 Output Action Probability

As shown in Figure 3.1, the packet reaches the output action state from either any of

the ingress flow-tables, Fi, where 0 ≤ i ≤ n, or any of the egress flow-tables, Fe+j , where

0 ≤ j ≤ m. Hence, the probability of the packet being in the output action state, P (O),

depends on Equations (3.11), (3.13), (3.17)–(3.20), (3.22), and (3.23). We define P (O)

as shown in Equation (3.25).

P (O) =
n∑

i=0
P (O|Fi)P (Fi) +

m∑
j=0

P (O|Fe+j)P (Fe+j)

= p
3

[
P (F0) + P (F1) +

n−1∑
i=2

P (Fi)
]
+ p

2

[
P (Fn) + P (Fe) + P (Fe+1)

m−1∑
j=2

P (Fe+j)
]

+pP (Fe+m)
(3.25)

32

3.3. Probabilistic Analysis

Additionally, using Stirling’s approximation formula on Equation (3.25), we get the

upper and lower bounds of P (O), as given in Equation (3.26).

[
1
3pp′

(
1 + 1

3n
+ 1
9n

lnn

)
+ p

2

[
p′

9n
lnn + P (Fe) +

(2 + p

6m

)
P (Fe) +

(
(2 + p)2
36m

)
P (Fe)

((m − 2) lnm − (m − 1) ln(m − 1) − (m − 1))] + p

(
(2 + p)2
36m

)
P (Fe) lnm

]
< P (O) <

[1
3pp′

(
1 + 1

3n
+ 1
3(lnn − 1)

)
+ p

2

[
p′

9n
lnn + P (Fe) +

(2 + p

6m

)
P (Fe) +

((2 + p)
6

)
P (Fe)

(lnm − 1)] + p

(
(2 + p)2

6

)
P (Fe) lnm

]
(3.26)

3.3.2 Packet Drop Probability

From Figure 3.1, we observe that the packet reaches the packet drop state, D, from

either any of the ingress flow-tables, Fi, where 0 ≤ i ≤ n, or any of the egress flow-

tables, Fe+j , where 0 ≤ j ≤ m. Hence, the probability of the packet getting dropped

depends on Equations (3.11), (3.14), (3.17)–(3.20), (3.22), and (3.23). We define P (D)

as given in Equation (3.27).

P (D) =
n∑

i=0
P (D|Fi)P (Fi) +

m∑
j=0

P (D|Fe+j)P (Fe+j)

=
(

1−p
3

) [
P (F0) + P (F1) +

n−1∑
i=2

P (Fi) + P (Fe) + P (Fe+1) +
m−1∑
j=2

P (Fj)
]
+

(
1−p

2

)
[P (Fn) + P (Fe+m)]

(3.27)

Additionally, using Stirling’s approximation formula on Equation (3.27), we get the

upper and lower bounds of P (D), as shown in Equation (3.28).

33

3. Theoretical Performance Analysis of SDN Switches

[(1 − p

3

)
p′

(
1 + 1

3n
+ 1
9n

lnn

)
+

(1 − p

3

)
P (Fe)

[
1 +

(2 + p

6m

)
+

(
(2 + p)2
36m

)

((m − 2) lnm − (m − 1) ln(m − 1) − (m − 1))] +
(1 − p

2

)(
p′

9n
lnn +

(
(2 + p)2
36m

)

P (Fe) lnm)] < P (D) <

[(1 − p

3

)
p′

(
1 + 1

3n
+ 1
3(lnn − 1)

)
+

(1 − p

3

)
P (Fe) [1+(2 + p

6m

)
+

(2 + p

6

)
(lnm − 1)

]
+

(1 − p

2

)(
p′

9n
lnn +

(
(2 + p)2
36m

)
P (Fe) lnm

)]

(3.28)

3.3.3 Send to Controller Probability

From Figure 3.1, we get that the packet reaches the controller from either any of the

ingress flow-tables, Fi, where 0 ≤ i ≤ n, or any of the egress flow-tables, Fe+j , where

0 ≤ j ≤ m. Hence, the probability of the packet getting forwarded to the controller

depends on Equations (3.11), (3.15), (3.17)–(3.20), (3.22), and (3.23). We define P (C)

as follows:

P (C) =
N∑

j=0
P (C|Fj)P (Fj) +

M∑
k=0

P (C|Fe+k)P (Fe+k) (3.29)

which is same as P (D).

3.4 Performance Analysis

In this Section, using AMOPE, we analyze the performance of packet flow through

an OpenFlow switch in SD-DCN. We evaluate the performance of AMOPE based on

the parameters mentioned in Section 3.4.2. We simulated AMOPE in the MATLAB

simulation platform. For simplicity, we consider that the number of OpenFlow switch in

SD-DCN is two, i.e., p′ = 1
2 , where p′ is the probability of the packet getting forwarded

to the concerned switch. Additionally, we consider that if a packet is forwarded to the

34

3.4. Performance Analysis

controller, it eventually, is queued in an OpenFlow switch.

3.4.1 Simulation Parameters

In AMOPE, simulations are performed for the OpenFlow switch in SD-DCN with a single

controller and two OpenFlow switches. We considered that the packet arrival rate and

the packet service rate per OpenFlow switch are approximately 0.2 million packets per

second (mpps) [9] and 0.03 mpps [87], respectively. We considered different simulation

parameters, as shown in Table 3.1. The simulation time is 5 sec, queue size per OpenFlow

switch is 0.73 million packets [9]. We considered that there are 10 number of ingress

flow-tables and either zero or 10 number of egress flow-tables, as shown in Table 3.1.

Table 3.1: Simulation parameters
Parameter Value

Number of OpenFlow switch 2

Packet arrival rate per switch 0.199147, 0.199731,
0.200633 mpps

Packet service rate per switch 0.03 mpps [87]
Queue size per switch 0.73 million packets [9]
Flow table lookup time 33.33333 μsec [87]
Number of ingress tables 10
Number of egress tables {0, 10}

3.4.2 Performance Metrics

We evaluate the performance of the OpenFlow switch based on the Markov chain-based

analytical model with different packet arrival rates — 0.199147, 0.199731, 0.200633 mil-

lion packets per second (mpps), while considering the following parameters:

Throughput: We consider that the throughput of an OpenFlow switch is defined

as the number of packets processed, i.e., reaches the output action state. A packet

can reach the output action state from any ingress or egress flow-tables.

35

3. Theoretical Performance Analysis of SDN Switches

 0

 10

 20

 30

 40

0 25 50 75 100 125 150 175 200 225 250

Th
ro

ug
hp

ut
 (i

n
M

bp
s)

Payload (in Bytes)

Sec 1
Sec 2
Sec 3

Sec 4
Sec 5

Theomin

Theomax

 40

 44

225 250

(a) Arrival Rate = 199147 pps

 0

 10

 20

 30

 40

0 25 50 75 100 125 150 175 200 225 250

Th
ro

ug
hp

ut
 (i

n
M

bp
s)

Payload (in Bytes)

Sec 1
Sec 2
Sec 3

Sec 4
Sec 5

Theomin

Theomax

 40

 44

225 250

(b) Arrival Rate = 199731 pps

 0

 10

 20

 30

 40

0 25 50 75 100 125 150 175 200 225 250

Th
ro

ug
hp

ut
 (i

n
M

bp
s)

Payload (in Bytes)

Sec 1
Sec 2
Sec 3

Sec 4
Sec 5

Theomin

Theomax

 40

 42.5

 45

225 250

(c) Arrival Rate = 200633 pps

Figure 3.3: Sent to Output Rate of an OpenFlow Switch

Number of Packets Dropped: A packet can be dropped due to following rea-

sons — there is no table-miss entry for ingress and egress flow-table or the table-

miss entry is to drop the packet, the output action is not defined for matched entry

at ingress or egress flow-table, and the action specified by the table-miss flow entry

is drop.

Number of Packets Sent to Controller: A packet is sent to the controller if the

action mentioned in the table-miss entry is to forward a packet to the controller.

The packets, which are forwarded to the controller from the OpenFlow switches,

are considered to be queued again in one of the available OpenFlow switches.

36

3.4. Performance Analysis

 0

 2

 4

 6

 8

0 25 50 75 100 125 150 175 200 225 250

Pa
ck

et
 D

ro
p

(in
 M

bp
s)

Payload (in Bytes)

Sec 1
Sec 2
Sec 3

Sec 4
Sec 5

Theomin

Theomax

 6.4

 6.8

225 250

(a) Arrival Rate = 199147 pps

 0

 2

 4

 6

 8

0 25 50 75 100 125 150 175 200 225 250

Pa
ck

et
 D

ro
p

(in
 M

bp
s)

Payload (in Bytes)

Sec 1
Sec 2
Sec 3

Sec 4
Sec 5

Theomin

Theomax

 6.4

 6.8

225 250

(b) Arrival Rate = 199731 pps

 0

 2

 4

 6

 8

0 25 50 75 100 125 150 175 200 225 250

Pa
ck

et
 D

ro
p

(in
 M

bp
s)

Payload (in Bytes)

Sec 1
Sec 2
Sec 3

Sec 4
Sec 5

Theomin

Theomax

 6.4

 6.8

225 250

(c) Arrival Rate = 200633 pps

Figure 3.4: Packet Drop Rate of an OpenFlow Switch

Average Queuing Packet Delay: We calculate the average queuing packet delay

as the duration between timestamp when a packet enters into OpenFlow switch,

and the time stamp when the packet enters through ingress port for processing.

Packet Processing Time: We consider the packet process time is the duration

between the time stamp when a packet enters to ingress flow-table F0 and the time

stamp when the packet gets out of the switch.

37

3. Theoretical Performance Analysis of SDN Switches

 0

 2

 4

 6

 8

 10

0 25 50 75 100 125 150 175 200 225 250Pa
ck

et
s S

en
t t

o
C

on
tro

lle
r (

in
 M

bp
s)

Payload (in Bytes)

Sec 1
Sec 2
Sec 3

Sec 4
Sec 5

Theomin

Theomax

 7.6

 8

225 250

(a) Arrival Rate = 199147 pps

 0

 2

 4

 6

 8

 10

0 25 50 75 100 125 150 175 200 225 250Pa
ck

et
s S

en
t t

o
C

on
tro

lle
r (

in
 M

bp
s)

Payload (in Bytes)

Sec 1
Sec 2
Sec 3

Sec 4
Sec 5

Theomin

Theomax

 7.6

 8

225 250

(b) Arrival Rate = 199731 pps

 0

 2

 4

 6

 8

 10

0 25 50 75 100 125 150 175 200 225 250Pa
ck

et
s S

en
t t

o
C

on
tro

lle
r (

in
 M

bp
s)

Payload (in Bytes)

Sec 1
Sec 2
Sec 3

Sec 4
Sec 5

Theomin

Theomax

 7.6

 8

225 250

(c) Arrival Rate = 200633 pps

Figure 3.5: Send to Controller Rate of an OpenFlow Switch

3.4.3 Result and Discussion

For simulation, we generated random numbers from the Poisson distribution with a mean

packet arrival rate of 0.2 mpps, as we considered the Markovian process. Additionally,

we considered randomness, while taking a decision on table-hit and table-miss. If there

is table-miss flow entry, and action mentioned for table-miss flow entry is to forward to

the controller, the packets get queued again in the OpenFlow switch buffer.

From Figure 3.3, we observe that approximately 9% of the arrived number of packets

are sent for output action. In Figures 3.3(a), 3.3(b), and 3.3(c), the throughput of an

OpenFlow switch increases with the increase in payload size. Additionally, we get that

38

3.4. Performance Analysis

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

0 25 50 75 100 125 150 175 200 225 250

A
ve

ra
ge

 Q
ue

ui
ng

 D
el

ay
 (i

n
s)

Payload (in Bytes)

Sec 1
Sec 2

Sec 3
Sec 4

Sec 5

(a) Arrival Rate = 199147 pps

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

0 25 50 75 100 125 150 175 200 225 250

A
ve

ra
ge

 Q
ue

ui
ng

 D
el

ay
 (i

n
s)

Payload (in Bytes)

Sec 1
Sec 2

Sec 3
Sec 4

Sec 5

(b) Arrival Rate = 199731 pps

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

0 25 50 75 100 125 150 175 200 225 250

A
ve

ra
ge

 Q
ue

ui
ng

 D
el

ay
 (i

n
s)

Payload (in Bytes)

Sec 1
Sec 2

Sec 3
Sec 4

Sec 5

(c) Arrival Rate = 200633 pps

Figure 3.6: Average Queuing Delay of an OpenFlow Switch

the throughput in each second is almost similar. Hence, we conclude that the throughput

of an OpenFlow switch depends on the payload as well as on the number of matched

packets. On the other hand, Figure 3.4 shows that almost 60% of the packets are

dropped, as there is either no table-miss flow entry for ingress and egress of flow-tables,

or the action mentioned in the table-miss flow entry is packet drop, or any output

action is not mentioned in the matched entry. Here, from Figures 3.4(a), 3.4(b), and

3.4(c), we observe that the packet drop (in Mbps) increases with the increase in payload.

Additionally, we conclude that OpenFlow considers each packet as an individual entity,

and process separately. Additionally, from Figures 3.5(a), 3.5(b), and 3.5(c), we yield

that the approximately 31% of the arrived packets are sent to the controller, and sent

39

3. Theoretical Performance Analysis of SDN Switches

0.02484

0.02485

0.02486

0.02487

0.02488

0.02489

0 25 50 75 100 125 150 175 200 225 250

A
ve

ra
ge

 P
ac

ke
t

Pr
oc

es
si

ng
 T

im
e

(in
 s)

Payload (in Bytes)

Sec 1
Sec 2

Sec 3
Sec 4

Sec 5

(a) Arrival Rate = 199147 pps

 0.0248

 0.02485

 0.0249

 0.02495

 0.025

 0.02505

0 25 50 75 100 125 150 175 200 225 250

A
ve

ra
ge

 P
ac

ke
t

Pr
oc

es
si

ng
 T

im
e

(in
 s)

Payload (in Bytes)

Sec 1
Sec 2

Sec 3
Sec 4

Sec 5

(b) Arrival Rate = 199731 pps

0.02478

0.02479

0.02480

0.02481

0.02482

0 25 50 75 100 125 150 175 200 225 250

A
ve

ra
ge

 P
ac

ke
t

Pr
oc

es
si

ng
 T

im
e

(in
 s)

Payload (in Bytes)

Sec 1
Sec 2

Sec 3
Sec 4

Sec 5

(c) Arrival Rate = 200633 pps

Figure 3.7: Average Packet Processing Delay of an OpenFlow Switch

back to OpenFlow switch queue again. From Figures 3.3, 3.4, and 3.5, we observe that

the simulated results lie within the theoretical minimum and maximum values obtained

using AMOPE.

Figures 3.6 and 3.7 depict two types of delay of the OpenFlow switch such as queuing

and processing delay. From Figures 3.6(a), 3.6(b), and 3.6(c), we observe that the average

queuing delay is much higher compared to processing delay. Hence, we conclude that

the packet delay at the OpenFlow switch increases mostly due to the packet queuing

delay. On the other hand, from Figures 3.7(a), 3.7(b), and 3.7(c), we observe that the

average packet processing time is almost similar for each time instant. For each time

instant, the packet processing delay is in the range [33.3333 μsec − 0.025 sec]. We get

40

3.5. Concluding Remarks

approximately 0.02 sec processing delay, in case of the packet has to go through for match

entries for each ingress and egress flow-tables. In Figures 3.7(a), 3.7(b), and 3.7(c), we

see that the average processing delay varies randomly for different arrival rate, as the

packet processing delay solely depends on the number of flow-tables the packet has to

go through for finding a match. Additionally, from Figures 3.6 and 3.7, we get that

delay factor are almost linear with the variation of payload, as the processing time in

an OpenFlow switch depends on the header size of the packet, i.e., the matched field

entries, and does not depends on the payload.

We observe that the packet delay can be improved, while using an efficient queuing

algorithm for an OpenFlow switch. On the other hand, the packet drop rate is too high

for an OpenFlow switch due to limitations of TCAM memory size, and the mismatch of

rules. Hence, we suggest that the packet drop rate can be improved, while using TCAM

memory, efficiently, and using a proper rule placement mechanism.

3.5 Concluding Remarks

In this Chapter, we analyzed the performance of packet flow through an OpenFlow

switch in SD-DCNs and proposed AMOPE, an analytical model, to define the probabilis-

tic bounds of the performance metrics of the OpenFlow switch. We modeled the packet

flow steps in an OpenFlow switch using Markov chain and calculated the theoretical

probabilities of the packet to be any state. Additionally, we calculated the probabilities

of a packet being at output action state, packet getting dropped, and packet getting for-

warded to the controller, theoretically. We also verified the theoretical findings using the

MATLAB simulation platform. Simulation-based analysis exhibited that approximately

60% of the processed packets are sent to output action, 31% of the processed packets are

sent to the controller, and the remaining processed packets are dropped in an OpenFlow

switch. We inferred that in an OpenFlow switch, the total delay is high due to a high

delay at the queue of the OpenFlow switch. On the other hand, in an OpenFlow switch,

41

3. Theoretical Performance Analysis of SDN Switches

a high number of packets get dropped due to either not having table-miss flow entry, or

output action not being specified.

42

Chapter 4

Buffer Size Analysis of SDN

Switches

In this Chapter, we propose an analytical scheme, named OPUS, for buffer bound eval-

uation of an OpenFlow system. Additionally, we propose a queueing scheme for an

OpenFlow system — I-M/M/1/K queueing model — based on the OpenFlow specifi-

cation version 1.5.0. Further, we calculate the minimum buffer size requirement of an

OpenFlow switch, theoretically.

This Chapter is organized as follows. The design of OPUS is proposed in Section

4.1. Section 4.2 focuses on the formulation of the proposed analytical model, OPUS.

Additionally, we evaluate two cases in Section 4.3. Thereafter, Section 4.4 discusses

the performance evaluation of the required buffer size of an OpenFlow switch-based

system with varying packet arrival and processing rate in SD-DCN. Finally, Section 4.5

concludes this Chapter.

43

4. Buffer Size Analysis of SDN Switches

Figure 4.1: OpenFlow Switch with I Ingress Ports/Buffers

4.1 System Model

In this section, we present the architecture of an OpenFlow switch-based system in

SD-DCNs. According to the OpenFlow specification version 1.5.0 [5], in an OpenFlow

switch, there exist multiple ingress and output ports. Each incoming packet is directed

to an ingress port based on the port number embedded in the packet. We consider that

there are I ingress ports in an OpenFlow switch, as shown in Figure 4.1. Each ingress

port i ∈ [1, I] has a fixed size of buffer, which is denoted as Ki, as shown in Figure 4.2.

At ingress port i, the mean packet arrival rate and the mean packet processing rate are

denoted as λi and μi, respectively. Hence, the traffic intensity of buffer i in an OpenFlow

switch is defined as λi
μi
. The packets from each buffer are processed against the same

set of flow-rules. According to the OpenFlow specification version 1.5.0, multiple flow-

tables exist in an OpenFlow switch. After reaching an OpenFlow switch, each packet

gets forwarded to one of the available ingress ports, e.g., ingress port i. Thereafter, it gets

44

4.1. System Model

queued in the buffer of the ingress port i, i.e., queued at state bm,i, where m ∈ [0, Ki).

We consider that packet processing at an OpenFlow switch follows Markovian Process.

4.1.1 Markovian Process: The Justification

We studied the behavior of an OpenFlow switch using Markovian model [88], as it follows

the following Markov properties:

1. Each packet is processed individually, and the behavior of an OpenFlow switch is

memoryless.

2. Packet processing in an OpenFlow switch is a stochastic process having Markov

properties, as the conditional probability distribution of the future state depends

only on the present state, not on the series of states followed in the past.

We consider that a packet gets queued at state X0, and follows the sequence X0 →
X1 → · · · → Xt, where Xt defines the state of the packet at time instant t. There-

fore, at time instant (t + 1), the probability of the packet to be in state Xt+1 is defined

as P [Xt+1|Xt, Xt−1, · · · , X2, X1, X0] = P [Xt+1|Xt], where Xt, Xt−1, and Xt+1 are the

present, immediate past, and future state of a Markovian process, respectively. We

consider that the packet arrival rate and the time between arrivals follow Poisson distri-

bution and exponential distribution, respectively, as given in Theorem 4.1.

Figure 4.2: The Ingress Port/Buffer i of an OpenFlow Switch

Theorem 4.1. Considering that the packet processing at an OpenFlow switch follows

the Markovian process, the arrival of packets and the time between arrivals follow the

Poisson distribution and exponential distribution, respectively.

45

4. Buffer Size Analysis of SDN Switches

Proof. Motivated by Chapman-Kolmogorov dynamics [88], we consider that in an in-

finitesimal time duration (t, t +Δt), the mutually exclusive and exhaustive events may

occur such as (1) One packet arrives to the buffer of an OpenFlow switch, (2) one packet

gets processed and no packet arrival in an OpenFlow switch, and (3) the number packets

in the buffer remains same. Based on these events, the rate of change in packet flow,
dqm,i

dt , at mth state of buffer i is defined as follows:

dqm,i(t)
dt

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−(λm,i + μm,i)qm,i(t) + λ(m−1),iq(m−1),i(t)

+μ(m+1),iq(m+1),i(t), if m ≥ 1

−λ0,iq0,i(t) + μ1,iq1,i(t), if m = 0

(4.1)

By solving Equation (4.1), we get that the probability of packet getting queued at

the ingress buffer of an OpenFlow switch follows the Poisson distribution. On the other

hand, the time between arrivals follows the exponential distribution.

4.1.2 Packet Flow through an OpenFlow Switch

Initially, the incoming packets get queued at the ingress buffers. Thereafter, from b0,i

of the buffer, each packet enters the ingress flow-table for rule matching, as mentioned

in OpenFlow version 1.5.0 [5]. If there is a table hit, then the packet follows the action

mentioned in the corresponding matched rule. The action can be one of these — (1) the

packet goes to another ingress flow-table having higher index than the current index of

the ingress flow-table; (2) the packet enters an egress flow-table if the egress flag of the

packet is set; and (3) the packet goes to the output port or gets dropped, according to

the action mentioned in the matched flow rule.

In case of table miss, the action can be one of these — (1) the packet gets forwarded

to the next flow-table; (2) the packets get forwarded to the controller, according to the

table-miss entry; and (3) the packet may get dropped, if either the action in the miss

flow entry is to drop the packet, or there is no table-miss entry.

46

4.2. OPUS Scheme: I-M/M/1/K Queue

We consider that, on an average, each packet gets processed by an OpenFlow switch

in 1
μi

time units. Based on this observation, we model the buffer at each ingress port of

an OpenFlow switch as the M/M/1/K model. Additionally, we consider that there are

I ingress ports in an OpenFlow switch. Therefore, in OPUS, we present the queueing

model in an OpenFlow switch as I-M/M/1/K Queuing Model, which is discussed in

Section 4.2.

4.2 OPUS Scheme: I-M/M/1/K Queue

In OPUS, we consider that there are I number of ingress ports. In other words, there is

I number of ingress buffers. Each packet can be queued at any of the I ingress buffers

based on the ingress port mentioned in the packet. We consider that a packet can be

forwarded to the ingress buffer i with probability qi. Therefore, we get —
I∑

i=1
qi = 1.

We consider that Ki denotes the size of the buffer i. We define each position in the

buffer as a state. Therefore, the mth state of buffer i means the mth position of buffer i.

At any infinitesimal time interval dt, the packets can enter the state m of buffer i in two

distinct events — (1) New packets are added to the queue at the arrival rate of λ(m−1),i,

i.e., state transition follows [b(m−1),i → bm,i] at a rate of λ(m−1),i; and (2) Queued packets

get processed by the system at a rate of μ(m+1),i, i.e., state transition follows [b(m+1),i →
bm,i] at a rate of μ(m+1),i. Therefore, in dt time interval, the incoming packet flow, IPm,i,

in the mth state of buffer i is defined as — IPm,i = q(m−1),iλ(m−1),idt+q(m+1),iμ(m+1),idt.

On the other hand, at infinitesimal time interval dt, the packets can leave from the

state m of buffer i in two distinct events — (1) new packets are added to the queue at

the arrival rate of λm,i. State transition follows [bm,i → b(m+1),i] at the rate of λm,i, and

(2) queued packets get processed by the system at the rate of μm,i, i.e., state transition

follows [bm,i → b(m−1),i] at a rate of μm,i. Therefore, outgoing packet flow, OPm,i, in dt

time interval from mth state of buffer i is defined as — OPm,i = qm,iλm,idt + qm,iμm,idt.

Hence, considering that dqm,i

dt = 0, we get — g(m−1),i = gm,i = constant, where gm,i =

47

4. Buffer Size Analysis of SDN Switches

qm,iλm,i − q(m+1),iμ(m+1),i. Therefore, from Equation (4.1), we get:

qm,i = q0,i

m−1∏
j=0

λj,i

μ(j+1),i
, ∀m ∈ (0, Ki] (4.2)

As per OpenFlow specification version 1.5.0 [5], the packets from different ingress

buffers get matched against the flow-table entries, simultaneously. Therefore, the packet

process rate of the system is fixed for an OpenFlow switch-based system. The packet

processing rate of buffer i is denoted as follows:

μm,i = μ, ∀m ∈ [0, Ki] and ∀i ∈ [1, I] (4.3)

where μ is a constant for an OpenFlow switch-based system. On the other hand, the

packet arrival rate varies for each buffer i. Therefore, the packet arrival rate for buffer

i is denoted as follows:

λm,i =

⎧⎪⎨
⎪⎩

λi ∀m ∈ [0, Ki)

0 otherwise
(4.4)

where λi is the packet arrival rate for buffer i. Additionally, according to the Poisson’s

splitting rule [89], we get ∑I
i=1 λi = λ and λi = qiλ. Based on Equations (4.3) and (4.4),

the probability of a arrived packet to be at the mth state of buffer i, qm,i, is re-defined

as follows:

qm,i = q0,i

m−1∏
j=0

λi
μ = q0,i

(
λi
μ

)m
(4.5)

Therefore, considering
Ki∑

m=0
qm,i = qi, from Equation (4.5), we evaluate the probability

of an arrived packet to be in the 0th state of buffer i, i.e., q0,i, as follows:

q0,i = qi

⎡
⎢⎣ 1− λi

μ

1−
(

λi
μ

)Ki+1

⎤
⎥⎦ (4.6)

48

4.2. OPUS Scheme: I-M/M/1/K Queue

Using OPUS, we measure the performance of an OpenFlow switch-based system

based on the parameters — (1) expected number of packets in the system associated

with an ingress buffer i of an OpenFlow switch, (2) expected number of packets queued

at an ingress buffer i of an OpenFlow switch, (3) expected waiting time of a packet in

the system of an OpenFlow switch, and (4) expected waiting time of a packet in buffer

i of an OpenFlow switch.

The expected number of packets in the system for buffer i, denoted by Ls,i, is ex-

pressed as follows:

Ls,i =
Ki∑

m=0
mqm,i = qi

(
λi
μ

)⎡
⎢⎢⎣1−

[
1+Ki

(
1− λi

μ

)](
λi
μ

)Ki

(
1− λi

μ

)[
1−

(
λi
μ

)Ki+1
]

⎤
⎥⎥⎦ (4.7)

The expected number of packets in the buffer i is denoted by Lq,i. The expected

number of packets in service, which is the number of packets getting matched against

the ingress and egress flow-table entries, denoted as Lpr,i. We calculate Lpr,i as the

probability that the processing unit of OpenFlow switch is busy, and expressed as

— Lpr,i = qi

(
λi
μ

)
.

Therefore, Lq,i is expressed as follows:

Lq,i = qi

(
λi
μ

)⎡
⎢⎣ λi

μ

1− λi
μ

−
(Ki+1)

(
λi
μ

)Ki

1−
(

λi
μ

)Ki+1

⎤
⎥⎦ (4.8)

Based on Equation (4.8), the maximum buffer size and the maximum packet traffic

intensity of buffer i of an OpenFlow switch are evaluated in Theorems 4.2 and 4.3,

respectively.

Theorem 4.2. For a fixed packet traffic intensity, λi
μ , of buffer i, the maximum buffer

size, Ki, needs to satisfy the following constraint:

(Ki + 1) ln
(

λi
μ

)
+ 1 =

(
λi
μ

)Ki+1 (4.9)

49

4. Buffer Size Analysis of SDN Switches

Proof. Considering that traffic intensity is fixed, we need to evaluate the maximum buffer

size Lmax
q,i required for minimizing the packet drop rate. Mathematically,

Lmax
q,i = max

Ki

Lq,i (4.10)

Hence, we take first order derivative of Lq,i with respect to Ki and put dLq,i

dKi
= 0.

Thereafter, considering that λi
μ �= 1 and qi �= 0, we get Equation (4.9).

Additionally, performing second order derivative of Lq,i with respect to Ki, we get

that (1 −
(

λi
μ

)Ki+1
) > 0 and d2Lq,i

dKi
2 < 0. Hence, we proof that for a fixed packet arrival

intensity, the maximum value of Ki holds the constraint mentioned in Equation (4.9).

Theorem 4.3. For a fixed buffer size, Ki, of buffer i, the maximum packet traffic

intensity, λi
μ , needs to satisfy the following constraint:

⎡
⎢⎣1−

(
λi
μ

)ki+1

1−
(

λi
μ

)
⎤
⎥⎦

2

= (ki + 1)2
⎡
⎢⎣
(

λi
μ

)ki−1

2−
(

λi
μ

)
⎤
⎥⎦ (4.11)

Proof. Considering that buffer size is fixed, our objective is:

maxLq,i (4.12)

while satisfying the constraint that λi
μ < 1. Hence, taking first order derivative of Lq,i

with respect to λi
μ and considering dLq,i

d

(
λi
μ

) = 0, λi
μ �= 0, and qi �= 0, we get the condition

for optimum value of λi
μ as mentioned in Equation (4.11).

Additionally, performing second order derivative of Lq,i with respect to Ki, we get

that the maximum packet traffic intensity, λi
μ , follows the constraint given in Equation

(4.11), while taking into consideration that the following inequality holds:

(Ki + 1)2

√√√√(
λi
μ

)ki−1

2− λi
μ

≤ Ki + (Ki + 2)
(

λi
μ

)ki+1 (4.13)

50

4.3. Case Study

We define the waiting time of a packet in an OpenFlow switch as the time unit

spent by a packet in an OpenFlow switch before leaving the output port. Therefore, the

expected waiting time of a packet directed to buffer i in an OpenFlow switch, Ws,i, is

defined as Ws,i = Ls,i

λi
.

We define the waiting time at buffer i as the time unit spent by a packet in an

OpenFlow switch before entering into the ingress flow-table. The expected waiting time

of a packet at buffer i of an OpenFlow switch, Wq,i, is defined as Wq,i = Lq,i

λi
.

4.3 Case Study

We considered two cases — (1) single ingress port, i.e., I = 1, and (2) I ingress ports

with equal packet traffic intensity, where I ≥ 2. These cases are discussed briefly in the

following section.

4.3.1 Case I : I = 1

We consider that in an OpenFlow switch, there is a single ingress port. In other words,

the number of ingress buffer is one, i.e., I = 1. Hence, the expected number of packets

in the system, Ls,1, and in the buffer, Lq,1, are as follows:

Ls,1 =
(

λ
μ

)⎡
⎣1−

[
1+K

(
1− λ

μ

)](
λ
μ

)K(
1− λ

μ

)[
1−

(
λ
μ

)K+1
]

⎤
⎦ (4.14)

Lq,1 =
(

λ
μ

) [
λ
μ

1− λ
μ

− (K+1)
(

λ
μ

)K

1−
(

λ
μ

)K+1

]
(4.15)

where λ and μ are the average packet arrival rate and service rate, respectively, of an

OpenFlow switch, and K defines the buffer size of the ingress port. Additionally, the

expected waiting time of a packet in an OpenFlow switch before reaching the output

51

4. Buffer Size Analysis of SDN Switches

port, Ws,1, and the waiting time at ingress buffer of an OpenFlow switch, Wq,1, are

defined as follows:

Ws,1 = Ls,1
λ and Wq,1 = Lq,1

λ
(4.16)

4.3.2 Case II : I ≥ 2

We consider that there are at least two ingress ports (I ≥ 2) in an OpenFlow buffer.

Additionally, we consider that each arrived packet has an equal probability of being at

any of the available ingress port or buffer. Therefore, the probability of a packet being

queued at buffer i, qi, is 1
I .

Ls,i = λ
I2μ

⎡
⎣1−

[
1+K

(
1− λ

Iμ

)](
λ

Iμ

)K(
1− λ

Iμ

)[
1−

(
λ

Iμ

)K+1
]

⎤
⎦ (4.17)

Lq,i = λ
I2μ

[
λ

Iμ

1− λ
Iμ

− (K+1)
(

λ
Iμ

)K

1−
(

λ
Iμ

)K+1

]
(4.18)

where λ1 = · · · = λI = λ
I and K1 = · · · = KI = K. Hence, λ and K are constants

for a specific OpenFlow switch. Additionally, the expected waiting time of a packet in

an OpenFlow switch before reaching output port, Ws,i, and the waiting time at ingress

buffer i of an OpenFlow switch, Wq,i, are defined as follows:

Ws,i = Ls,i
I
λ and Wq,i = Lq,i

I
λ

(4.19)

4.4 Performance Evaluation

In this section, we analyze the required buffer size of an OpenFlow switch-based system

with varying packet arrival and processing rate in SD-DCN. We evaluate the performance

of OPUS scheme for an OpenFlow switch, based on the parameters such as maximum

arrival rate, minimum buffer size, and maximum waiting time. Generic test-bed infor-

52

4.4. Performance Evaluation

mation for OPUS is provided in Table 4.1. For simplicity, we evaluate the buffer size

requirement of a single OpenFlow switch in SD-DCN. Additionally, we consider that

each packet gets queued at buffer i ∈ [1, I] of an OpenFlow switch with a probability qi.

We consider that each packet selects a buffer, i.e., queue, i, randomly.

Table 4.1: System Specification
Parameter Value
Processor Intel(R) Core(TM) i5-2500

CPU @ 3.30 GHz
RAM 4 GB DDR3
Disk Space 500 GB
Operating System Ubuntu 16.04 LTS
Application Software MATLAB 2015b

Table 4.2: Simulation Parameters
Parameter Value
Number of OpenFlow switch 1
Number of buffers 2, 6, 10
Total buffer size 0.5, 0.75, 1 million packets
Packet arrival rate 0.15, 0.20, 0.25 mpps

Packet processing rate 0.01, 0.025, 0.05 mpps

Packet size 1500 Byte [9]
Simulation Duration 100 ms

4.4.1 Simulation Parameters

We simulated the performance of an OpenFlow switch-based system in SD-DCN, where

each OpenFlow switch has multiple numbers of queues such as 2 and 6, as mentioned in

Table 4.2. The total size of the buffer for each OpenFlow switch is varied in 0.5−1 million

packets (mp). On the other hand, the packet processing rate is varied in 0.01 − 0.05

million packets per second (mpps), as mentioned in Table 4.2. The size of each packet

is considered as 1500 bytes [9]. We simulate OPUS for different simulation durations

— 25, 50, 75, 100 ms.

53

4. Buffer Size Analysis of SDN Switches

 0
 0.05
 0.1

 0.15
 0.2

25 50 75 100

(a)

A
rr

iv
al

 R
at

e
(m

pp
s)

Simulation Time (ms)

Number of Buffers = 2

ProcRate=0.01 mpps

 0

 0.02

 0.04

25 50 75 100

(a) (b)

Simulation Time (ms)

Number of Buffers = 6

ProcRate=0.25 mpps

 0

 0.02

 0.04

 0.06

25 50 75 100

(a) (b) (c)

Simulation Time (ms)

Number of Buffers = 10

ProcRate=0.50 mpps

Figure 4.3: Maximum Arrival Rate per OpenFlow Switch.

 0
 100
 200
 300
 400
 500

25 50 75 100

(d)

W
ai

tin
g

 T
im

e
(m

s)

Simulation Time (ms)

 0
 100
 200
 300
 400
 500

25 50 75 100

(d) (e)

Simulation Time (ms)

 0
 100
 200
 300
 400
 500

25 50 75 100

(d) (e) (f)

Simulation Time (ms)

 0
 100
 200
 300
 400
 500

25 50 75 100

(d) (e) (f)

(a)

W
ai

tin
g

 T
im

e
(m

s)

Simulation Time (ms)

Buffer Size = 0.50 mp

ArrRate=0.15 mpps

 0
 100
 200
 300
 400
 500

25 50 75 100

(d) (e) (f)

(a) (b)

Simulation Time (ms)

Buffer Size = 0.75 mp

ArrRate=0.20 mpps

 0
 100
 200
 300
 400
 500

25 50 75 100

(d) (e) (f)

(a) (b) (c)

Simulation Time (ms)

Buffer Size = 1.0 mp

ArrRate=0.25 mpps

Figure 4.4: Maximum Waiting Time per OpenFlow Switch: In (a), (b) and (c), and in
(d), (e) and (f), number of buffers are 2 and 6, respectively; The buffer size per queue are
0.50, 0.75, and 1.0 mp in (a) and (d), (b) and (e), and (c) and (f), respectively.

4.4.2 Performance Metrics

We evaluated the performance of an OpenFlow switch with the different number of

queues or buffers such as 2, 6, 10, in the proposed I-M/M/1/K queue-based scheme,

OPUS, while considering the following parameters:

• Maximum Arrival Rate (ArrRate): The maximum arrival rate depends on

the average buffer size and the maximum processing rate. It varies proportionally

with the average buffer size of an OpenFlow switch. Additionally, the maximum

arrival rate varies proportionally with the number of buffers and the processing

rate of an OpenFlow switch.

54

4.4. Performance Evaluation

 0
 0.01
 0.02
 0.03
 0.04
 0.05

25 50 75 100

(d)

B
uf

fe
r S

iz
e

 (m
ill

io
n

pa
ck

et
s)

Simulation Time (ms)

 0
 0.01
 0.02
 0.03
 0.04

25 50 75 100

(d) (e)

Simulation Time (ms)

 0
 0.01
 0.02
 0.03
 0.04
 0.05

25 50 75 100

(d) (e) (f)

Simulation Time (ms)

 0
 0.02
 0.04
 0.06
 0.08

25 50 75 100

(d) (e) (f)

(a)

B
uf

fe
r S

iz
e

 (m
ill

io
n

pa
ck

et
s)

Simulation Time (ms)

Arrival Rate = 0.15 mpps

ProcRate=0.01 mpps

 0
 0.02
 0.04
 0.06
 0.08

 0.1

25 50 75 100

(d) (e) (f)

(a) (b)

Simulation Time (ms)

Arrival Rate = 0.20 mpps

ProcRate=0.025 mpps

 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14

25 50 75 100

(d) (e) (f)

(a) (b) (c)

Simulation Time (ms)

Arrival Rate = 0.25 mpps

 ProcRate=0.05 mpps

Figure 4.5: Minimum Buffer Size per OpenFlow Ingress Port: In (a), (b) and (c), and in
(d), (e) and (f), number of buffers are 2 and 6, respectively; The packet arrival rates are
0.15, 0.20, and 0.25 mpps in (a) and (d), (b) and (e), and (c) and (f), respectively.

• Minimum Buffer Size (BuffSize): The OpenFlow switches have Ternary Content-

Addressable Memory (TCAM) memory, which is costly. Hence, we need to evaluate

the minimum buffer size requirement of an OpenFlow switch for an optimum traffic

intensity.

• Maximum Waiting Time: The performance of an OpenFlow switch mostly

depends on the waiting time of a packet in the system. With the increase in the

waiting time, the performance of an OpenFlow switch degrades. Hence, we need

to evaluate the maximum waiting time of a packet in an OpenFlow switch.

4.4.3 Results and Discussions

For simulation, we considered that the packets enter through the ingress port of an

OpenFlow switch, and get forwarded randomly to any of the available buffers, before

getting matched against the ingress flow-tables. Thereafter, based on the table-hit and

table-miss entry, the packets are processed. Additionally, we consider that the packets,

which are forwarded to the SDN controller, get queued in the ingress buffers as newly

arrived packets.

55

4. Buffer Size Analysis of SDN Switches

 0
 100
 200
 300
 400
 500

25 50 75 100

(d)

Pr
oc

es
si

ng
 T

im
e

(m
s)

Simulation Time (ms)

 0
 100
 200
 300
 400

25 50 75 100

(d) (e)

Simulation Time (ms)

 0
 100
 200
 300
 400

25 50 75 100

(d) (e) (f)

Simulation Time (ms)

 0
 100
 200
 300
 400

25 50 75 100

(d) (e) (f)

(a)

Pr
oc

es
si

ng
 T

im
e

(m
s)

Simulation Time (ms)

Buffer Size = 0.50 mp

ArrRate=0.15 mpps

 0
 100
 200
 300
 400
 500

25 50 75 100

(d) (e) (f)

(a) (b)

Simulation Time (ms)

Buffer Size = 0.75 mp

ArrRate=0.20 mpps

 0
 100
 200
 300
 400
 500

25 50 75 100

(d) (e) (f)

(a) (b) (c)

Simulation Time (ms)

Buffer Size = 1.0 mp

ArrRate=0.25 mpps

Figure 4.6: Maximum Processing Time per OpenFlow Switch: In (a), (b) and (c), and in
(d), (e) and (f), number of buffers are 2 and 6, respectively; The buffer size per queue are
0.50, 0.75, and 1.0 mp in (a) and (d), (b) and (e), and (c) and (f), respectively.

From Figure 4.3, we observe that the maximum arrival rate, which can be handled by

an OpenFlow switch, increases by 26.15-30.4% with the increase in the processing rate of

an OpenFlow switch by two times. Additionally, we observe that with the increase in the

number of buffers, the maximum packet arrival rate per buffer decreases. However, the

maximum packet arrival rate in an OpenFlow switch remains the same, while considering

that the buffer size of an OpenFlow switch is constant. Therefore, we conclude that the

arrival rate of an OpenFlow switch remains constant with a fixed buffer size and fixed

processing rate.

From Figure 4.5, we observe that with the increase in the arrival rate, the minimum

buffer size requirement increases. On the other hand, for a fixed arrival rate, with the

increase in processing rate, the buffer size requirement increases up to the processing

rate 0.03-0.35 mpps. Thereafter, the minimum buffer size remains constant. Hence, we

conclude that the optimum arrival rate and processing rate of an OpenFlow switch lie in

the ranges 0.20-0.25 mpps and 0.03-0.35 mpps, respectively. The minimum buffer size

required is in the range 0.67-0.80 million packets.

Figure 4.6 shows that for buffer size 0.75 million packets, the processing rate of an

OpenFlow switch is less while considering that the packet arrival rate varies in the range

56

4.5. Concluding Remarks

0.15-0.25 mpps. On the other hand, from Figure 4.6, we infer that the packet processing

rate of an OpenFlow switch varies insignificantly. Hence, we conclude that for the packet

arrival rate in an OpenFlow switch with the rate of 0.15-0.25 mpps, the optimum number

of buffers is two. Additionally, the optimum buffer size of an OpenFlow switch is 0.75

million packets, i.e., 1.125 GB, while considering that each packet is of size 1500 bytes,

as mentioned in Table 4.2. In Figure 4.4, we observe that the packet waiting time is less

for an OpenFlow switch with buffer size 0.50 million packets, as few packets get dropped

due to insufficient buffer space at an OpenFlow switch. On the other hand, in Figure 4.4,

we observe that the waiting time of an OpenFlow is similar for OpenFlow switches with

buffer size 0.75 and 1.00 million packets. Hence, we conclude that the minimum waiting

time at an OpenFlow switch can be ensured with a buffer size of 0.75 million packets,

i.e., 1.125 GB. These analytical results confirm with the OpenFlow specification given

in Refs [9] and [87].

We maintain that the performance of an OpenFlow switch can be improved with the

packet arrival and processing rate of 0.20-0.25 mpps and 0.30-0.35 mpps, respectively.

On the other hand, the optimum buffer size of an OpenFlow switch is 0.75 million

packets, i.e., 1.125 GB, as observed using OPUS.

4.5 Concluding Remarks

In this Chapter, we analyzed the optimum buffer size of an OpenFlow switch in order to

ensure quality-of-service in OpenFlow systems. We analyzed the optimum packet arrival

and processing rates and the average waiting of packets in an OpenFlow switch-based

system. In OPUS, we modeled the architecture of an OpenFlow switch as a I-M/M/1/K

queue, while considering that there are I ingress buffers. Each buffer has K memory

blocks in an OpenFlow switch. We analyzed the optimum number of buffers with the

optimum value of each buffer. Additionally, we evaluated the optimum packet arrival

and processing rates of an OpenFlow switch using OPUS. Simulation-based analysis

57

4. Buffer Size Analysis of SDN Switches

exhibited that with two times increase in packet processing rate, the packet arrival

rate can be increased by 26.15-30.4%. We inferred that for an OpenFlow system, the

minimum buffer size is 0.75 million packets with the maximum packet arrival and the

minimum processing rate of 0.20-0.25 million packets per second (mpps) and 0.30-0.35

mpps, respectively, and the maximum packet waiting time is 0.173-0.249 second.

s

58

Chapter 5

QoS-Aware Data Traffic

Management

In this Chapter, we present two data traffic management schemes — network-specific

QoS-aware data traffic management (TROD) and flow-specific QoS-aware data traf-

fic management (FlowMan) which consider to optimize the flow-specific and network-

specific throughput and delay in SD-DCN. Both of these schemes are suitable for SD-

DCN in the presence of heterogeneous mice and elephant flows generated by IoT devices.

This Chapter is organized as follows. Initially, we model the proposed scheme,

TROD, in Section 5.1. The design of TROD is presented in Section 5.1.1. Section

5.1.3 discusses formulation of TROD using evolutionary game [90] along with the de-

signed algorithm for TROD in Section 5.1.5. We evaluate the performance of TROD

to the benchmark schemes in Section 5.1.6. Thereafter, we model the proposed scheme,

FlowMan, in Section 5.2. We present the design of FlowMan in Section 5.2.1. In Sec-

tion 5.2.3, we present the generalized Nash bargaining game [91]-based game-theoretic

model formulation of FlowMan. The performance evaluation of FlowMan is discussed

in Section 5.2.8. Finally, Section 5.3 concludes this Chapter.

59

5. QoS-Aware Data Traffic Management

5.1 TROD: The Throughput-Optimal Data Traffic Man-

agement Scheme

In this work, we introduce a game theory-based dynamic data traffic management

scheme, named TROD, for minimizing network delay and maximizing network through-

put in SD-DCN in the presence of IoT devices. We use an evolutionary game-theoretic

[90] approach to deciding the optimal data traffic volume which needs to be handled

by the switches, while considering that the data generation rate for each IoT device

is known a priori. Moreover, the evolutionary game helps to develop the intermediate

sub-optimal problem for efficient data traffic management. Thereafter, with the help of

linear programming, we evaluate the optimal time distribution matrix, which enables the

optimal data traffic distribution in SD-DCN in the presence of IoT-devices.

5.1.1 System Model

We consider an SD-DCN having a single controller and multiple SDN switches. The

schematic diagram of SD-DCN architecture is shown in Figure 5.1. We consider that

the IoT devices are connected with the SDN switches through the access point (APs).

These IoT devices are heterogeneous in terms of data generation rate. We consider a

stochastic process, where the IoT devices are static for a fixed time duration. Each AP is

connected with multiple SDN switches. The data traffic generated by the IoT devices are

forwarded to one of the connected SDN switches via available AP. Thereafter, the data

traffic is processed by the SDN switches according to the flow-rule entries and forwarded

to the backhaul network for further processing.

In the case of table-miss, meta-data of the data traffic is forwarded to the controller,

and it installs the corresponding rule to one of the switches. Additionally, due to limited

TCAM, there is a limitation of the maximum number of rules that can be installed in

an SDN switch. For example, according to the OpenFlow specification version 1.5.0 [5],

60

5.1. TROD: The Throughput-Optimal Data Traffic Management Scheme

maximum of 8000 rules can be installed in an OpenFlow switch, while considering that

45 match fields are present in each rule in the flow table.

Figure 5.1: Schematic Diagram of SD-DCN in the Presence of IoT-Devices

As shown in Figure 5.1, with the change in the position of edge devices, i.e., IoT

devices, the installed rules need to be changed dynamically by the controller. In such a

situation, the throughput of the SDN switch gets affected depending on the number of

active flow-rules in the flow table and the volume of the data traffic. We define active

flow-rule as mentioned in Definition 5.1.

Definition 5.1. We define a flow-rule to be active at time instant t if that rule is used

for forwarding data traffic within a time duration of [t − δ, t], where δ > 0.

We consider that a sub-tree of IoT-enabled SD-DCN comprises of a single controller,

multiple SDN switches, and multiple IoT devices. Each switch s ∈ S, where S is the set

of available switches, is capable of installing maximum Rmax
s number of rules. Therefore,

the maximum number of rules Rmax, which can be accommodated is expressed as follows:

R
max =

∑
s∈S

Rmax
s (5.1)

61

5. QoS-Aware Data Traffic Management

Moreover, we consider that each IoT device n ∈ A, where A is the set of available IoT

devices in SD-DCN, generates fn number of data traffic flows. The data generation-rate

of each data traffic flow i, where 0 ≤ i ≤ fn and n ∈ A, is denoted as λi. Additionally,

we consider that the volume of data associated with each data traffic flow i, where

0 ≤ i ≤ fn and n ∈ A, is denoted by νi. Therefore, we have:

νi =
T∑

t=1
λi (5.2)

We consider that each data traffic flow i generated by the IoT devices is mutually

exclusive. Therefore, the data traffic management by the controller needs to ensure the

following constraint:

∑
n∈A

fn ≤ R
max (5.3)

We consider that each switch s ∈ S handles Fs number of flow-rules. Additionally,

the incoming-flow rate at time instant t for each switch s is denoted as λs(t). Hence,

the incoming volume of data traffic Vs handled by each switch s is defined as follows:

Vs =
Fs∑

j=1
νj =

T∑
t=1

λs(t) (5.4)

where T is the time duration for which the IoT devices remain static. On the other hand,

each switch s has a processing limit of μs amount of data per unit time. Therefore, in

order to ensure optimal throughput of the network, the controller needs to ensure that

the data traffic is properly distributed among the available switches.

5.1.2 Justification for Using Evolutionary Game

For efficient data traffic management, we need to ensure that the load of the network,

i.e., the volumetric data, is optimally distributed among the available switches. Hence,

in order to reduce the processing delay in the switch, the controller tries to reduce the

62

5.1. TROD: The Throughput-Optimal Data Traffic Management Scheme

load on each switch. However, the controller also needs to ensure the overall throughput

of the network. Thereby, our objective is as follows:

max∑
μs

min
λs

∑
s∈S

Vs (5.5)

while satisfying the constraints given in Equations (5.3) and (5.4). Additionally, we need

to satisfy the following constraints:

λs ≥ 0 and μs ≤ μmax (5.6)

∑
s∈S

xs,i(t) = 1 and Fs =
∑
n∈A

fn∑
i=1

xs,i (5.7)

where μmax is the maximum processing rate of the SDN switches; and xs,i(t) denotes

the association vector of flow-rule Fs, and is a binary variable. We define:

xs,i(t) =

⎧⎪⎨
⎪⎩

1, if Rule i is installed at switch s

0, otherwise
(5.8)

Therefore, we infer that the aforementioned problem is an integer programming prob-

lem, in which the variable xs,i(t) can take only binary values — {0, 1}. Hence, this prob-
lem is an NP-complete problem [92]. Thereby, we use an evolutionary game-theoretic

approach in order to reduce it to a linear programming problem, and achieve a sub-

optimal solution, i.e., ensuring optimal throughput of the network, in polynomial time.

5.1.3 Game Formulation

In order to achieve a sub-optimal solution, we use an evolutionary game theoretic ap-

proach. In the proposed dynamic data traffic management scheme, named TROD, the

IoT devices act as the players and choose the set of optimal SDN switches, i.e., strategies

in TROD, for forwarding data with the help of SDN controller. Here, the controller acts

63

5. QoS-Aware Data Traffic Management

as a centralized coordinator. In TROD, we consider that the population share, i.e., the

total volume of data traffic, needs to be divided among the available switches. Therefore,

the population share ys(ω) of each switch s ∈ S is defined as follows:

ys(ω) =
Vs(ω)∑
s∈S

Vs
(5.9)

where ω is the evolutionary iteration.

5.1.3.1 Utility Function of Each Switch

Utility value φs(ω) signifies the fitness function for switch s. We consider that φs(ω)

varies linearly with the population share of switch s. On the other hand, with the increase

in number of active flow-rules Fs(ω) installed, the utility value decreases. For example,

switches s1 and s2 have population share of ys1(ω) and ys2(ω), respectively. Additionally,

the number of rules installed in the switches s1 and s2 are Fs1(ω) and Fs2(ω), respectively.

Hence, considering that Fs1(ω) = Fs2(ω), we get φs1(ω) 	 φs2(ω), where ys1(ω) ≥ ys2(ω).

On the other hand, we observe φs1(ω)
 φs2(ω), while considering that Fs1(ω) ≥ Fs2(ω)

and ys1(ω) = ys2(ω). Hence, we define the utility function as follows:

φs(ω) = ys(ω)
(
1 − Fs(ω)

Rmax
s

)
(5.10)

Thereafter, the controller calculates average payoff φ(ω) of the population using the

following equation:

φ(ω) =
∑
s∈S

ys(ω)φs(ω) (5.11)

5.1.3.2 Replicator Dynamics of TROD

In TROD, each switch acts as a replicator, and tries to mutate and evolve over successive

iteration and reach the evolutionary equilibrium. Dynamic of the change in population

64

5.1. TROD: The Throughput-Optimal Data Traffic Management Scheme

share is obtained using replicator dynamics. In TROD, the replicator dynamics of each

switch s is represented as follows:

ẏs(ω) = σys(ω)
(
φs(ω) − φ(ω)

)
(5.12)

where σ is the evolution controlling factor. In TROD, σ value determines the permissible

rate of change in population share in two successive evolutionary iterations.

5.1.3.3 Reduced Sub-Optimal Problem

By using evolutionary game theoretic approach, we get the population share y∗
s of each

switch s at equilibrium, while satisfying the following constraint:

ẏs(ω)|ys(ω)=y∗
s
≈ 0 (5.13)

Hence, the vector of the volume of data traffic, which needs to be handled by the

switches, is defined as follows:

V = y
∑
s∈S

Vs (5.14)

where V = [V ∗
1 · · · V ∗

|S|]T and y = [y∗
1 · · · y∗

|S|]T .

Therefore, we yield a system of linear equations, which is easily solvable using linear

programming. The system of linear equations is expressed as follows:

λTT = V (5.15)

where λ = [λ1 · · · λ(
∑

n∈A

fn)], and T
T defines the transpose of matrix T. We define

time-distribution matrix T as follows:

65

5. QoS-Aware Data Traffic Management

T =

⎡
⎢⎢⎢⎢⎢⎣

Δt11 · · · Δt(
∑

fn)1
...

Δt1|S| · · · Δt(
∑

fn)|S|

⎤
⎥⎥⎥⎥⎥⎦ (5.16)

where Δtis defines the time duration for which data traffic flow i gets forwarded by

switch s. Additionally, Equation (5.15) needs to satisfy the following constraint:

∑
n∈A

fn∑
i=1

Δtis = T, ∀s ∈ S (5.17)

5.1.4 Theoretical Analysis:

In this section, we analyze TROD, theoretically, while evaluating the existence of evo-

lutionary equilibrium. As mentioned earlier, at evolutionary equilibrium, the change in

population share ẏs(ω) of each switch s becomes zero. Therefore, we get:

σys(ω)
(
φs(ω) − φ(ω)

)
= 0 (5.18)

We consider that σ > 0 and is a constant, and each switch s has a positive population

share, i.e., ys(ω) > 0. Therefore, Equation (5.18) can be written as follows:

φs(ω) − φ(ω) = 0 (5.19)

By solving Equation(5.19), we get:

(y∗
s)2 − y∗

s +

∑
s′∈S/{s}

(y∗
s′)2

[
1 − Fs′

Rmax
s′

]

1 − Fs
Rmax

s

= 0 (5.20)

Hence, theoretically, we yield that the optimal population share y∗
s of each switch s

is as follows:

66

5.1. TROD: The Throughput-Optimal Data Traffic Management Scheme

Algorithm 5.1 Algorithm for TROD Scheme
INPUTS:

1: N
 Set of available IoT devices
2: S
 Set of available SDN switches
3: fn
 Number of flows of IoT-device n
4: Fs
 Flow-rules installed in switch s
5: R

max
 Maximum number of rules in sub-tree of SD-DCN
6: Rmax

s
 Maximum number of rules in switch s
7: λi
 Generation-rate of data traffic flow i
8: σ
 Evolution controlling factor
OUTPUT:

1: T
 Time-distribution matrix
PROCEDURE:

1: ω ← 1
2: Randomly map each data traffic flow 0 ≤ i ≤ fn, where n ∈ A to any switch s ∈ S

3: for Each s ∈ S do
4: Calculate Vs(ω) using Equations (5.2) and (5.4)
5: Calculate population share ys(ω) using Equation (5.9)
6: end for
7: do
8: for Each s ∈ S do
9: Calculate utility value φs(ω) using Equation (5.10)

10: end for
11: Calculate average payoff φ(ω) of the population using Equation (5.11)
12: for Each s ∈ S do
13: Calculate replicator dynamics ẏs(ω) using Equation (5.12)
14: ω ← ω + 1
15: ys(ω) ← ys(ω − 1) − ẏs(ω − 1)
16: end for
17: while (ẏs(ω) ≈ 0)
18: y∗

s ← ys(ω)
19: Calculate V using Equation (5.14)
20: Calculate T using Equation (5.15)
21: return T;

67

5. QoS-Aware Data Traffic Management

y∗
s =

1 ± √
1 − 4ζ

2 (5.21)

where ζ =

⎡
⎢⎢⎣

∑
s′∈S/{s}

(y∗
s′)2

[
1− Fs′

Rmax
s′

]
1− Fs

Rmax
s

⎤
⎥⎥⎦. Therefore, we get that TROD ensures evolutionary

equilibrium. Based on the derived {y∗
s |∀s ∈ S} values, we get (|S| + ∑

n∈A

fn) number of

linear equations. By solving the linear equations, we can easily obtain the dynamic data

traffic distribution over a fixed time duration T , while ensuring optimal delay at the

switch-end and optimal throughput of SD-DCN.

5.1.5 Proposed Algorithm:

To achieve the sub-optimal solution of TROD, the controller tries to distribute the

data traffic among the available SDN switches. The controller tries to ensure that each

switch satisfies the equilibrium condition. The dynamic data traffic management scheme,

TROD, ensures delay and throughput-optimal data traffic in IoT-enabled SD-DCN using

Algorithm 5.1. In Algorithm 5.1, each data traffic flow i, where 1 ≤ i ≤ fn and n ∈ A,

is mapped randomly to one of the available switches. Thereafter, with the help of the

controller, each switch decides the optimal population share, i.e., data-traffic volume

needed to be handled over the time-period T . Finally, using the linear equations derived

with the help of evolutionary game theory, the controller schedules the data-traffic among

the available switches with the help of the time-distribution matrix.

5.1.6 Performance Evaluation

In this section, we analyze the performance of TROD with the varying number of data

traffic flows and the available switches in SD-DCN. Generic test-bed information for

TROD is provided in Table 5.2.

68

5.1. TROD: The Throughput-Optimal Data Traffic Management Scheme

5.1.6.1 Simulation Parameters

For simulation, we varied the number of SDN switches and the number of IoT-devices

as mentioned in Table 5.1. We simulated TROD in the MATLAB simulation platform,

as mentioned in Table 5.2. We considered that each flow generates data traffic at the

rate of 0.2 million packets per second (mpps). We simulated TROD for 100 simulation

seconds.

Table 5.1: Simulation Parameters
Parameter Value
Number of SDN switches 4, 8, 12
Number of IoT-devices 50, 100, 150, 200
Number of flow per device 10
Data traffic generation rate 0.2 mpps/flow

Maximum number of flow
rules per switch 8000 [5]

Simulation duration 100 sec

Table 5.2: System Specification
Parameter Value
Processor Intel(R) Core(TM) i5-2500

CPU @ 3.30 GHz
RAM 4 GB DDR3
Disk Space 500 GB
Operating System Ubuntu 16.04 LTS
Application Software MATLAB 2015b

5.1.6.2 Benchmarks

The performance of TROD is evaluated by comparing with existing schemes — Mobi-

Flow [48] and CURE [93]. In Mobi-Flow, Bera et al. [48] proposed a data traffic man-

agement scheme in the presence of IoT-devices while predicting the location of the IoT-

devices. The authors also studied the dynamic data traffic management, while installing

the flow-rules in the SDN switches, dynamically. On the other hand, In CURE, Maity

et al. [93] proposed a data traffic management scheme while considering the update of

69

5. QoS-Aware Data Traffic Management

 20

 22

 24

 26

 28

 30

1 2 3 4

V
ol

um
e

of
 D

at
a

T
ra

ff
ic

 (
x1

02 m
p)

Switch ID

 TROD
 Mobi-Flow

 CURE

(a) Number of IoT-Device = 50

 46

 48

 50

 52

 54

1 2 3 4

V
ol

um
e

of
 D

at
a

T
ra

ff
ic

 (
x1

02 m
p)

Switch ID

 TROD
 Mobi-Flow

 CURE

(b) Number of IoT-Device = 100

 94

 96

 98

 100

 102

 104

1 2 3 4

V
ol

um
e

of
 D

at
a

T
ra

ff
ic

 (
x1

02 m
p)

Switch ID

 TROD
 Mobi-Flow

 CURE

(c) Number of IoT-Device = 200

Figure 5.2: Volume of Data Traffic Processed by Switches with Varied Number of IoT
Devices

flow-rules in the switches according to the priorities of the switches.

5.1.6.3 Performance Metrics

We evaluated the performance of TROD using the following metrics:

Volume of data traffic processed by each switch: We consider that with

the increase in the volume of data processed by each switch, the queuing delay

increases. Hence, we consider the volume of data traffic processed by each switch.

Throughput of each switch: The overall throughput of the network depends

linearly on the throughput of the individual switch. On the other hand, throughput

per switch also signifies the balance factor of the switches in data traffic manage-

ment.

70

5.1. TROD: The Throughput-Optimal Data Traffic Management Scheme

 0.22

 0.24

 0.26

 0.28

1 2 3 4

T
hr

ou
gh

pu
t (

x1
02 m

p)

Switch ID

 TROD
 Mobi-Flow

 CURE

(a) Number of IoT-Device = 50

 0.46

 0.48

 0.5

 0.52

 0.54

1 2 3 4

T
hr

ou
gh

pu
t (

x1
02 m

p)

Switch ID

 TROD
 Mobi-Flow

 CURE

(b) Number of IoT-Device = 100

 0.94

 0.96

 0.98

 1

 1.02

 1.04

1 2 3 4

T
hr

ou
gh

pu
t (

x1
02 m

p)

Switch ID

 TROD
 Mobi-Flow

 CURE

(c) Number of IoT-Device = 200

Figure 5.3: Throughput of Switches with Varied Number of IoT Devices

5.1.6.4 Results and Discussions

For simulations, we considered that the controller updates the flow-tables of each switch,

periodically in every 10 simulation seconds.

From Figure 5.2, we observe that with the increase in the number of IoT-devices,

the volume of data traffic increases. However, using TROD, the volume of data traffic

gets distributed equally among the available switches than using Mobi-Flow and CURE.

We observe that TROD distributes the incoming traffic among the available switches

equally. Hence, the queuing delay of the network reduces by 23.4-29.7%.

On the other hand, from Figure 5.3, we observe that the throughput of each switch is

the same using TROD. Hence, we get that the data traffic in the network is distributed

properly using TROD, than using Mobi-Flow and CURE. From Figure 5.3, we observe

that the throughput of each switch increases by 23.1-28.78% using TROD than using

71

5. QoS-Aware Data Traffic Management

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 2 3 4 5 6 7 8 9 10

Po
pu

la
tio

n
Sh

ar
e

of
 E

ac
h

Sw
itc

h

Number of iterations

 SW-1
SW-2
SW-3
SW-4

Figure 5.4: Population Share of each Switch

Mobi-Flow and CURE. Additionally, from Figure 5.4, we observe that the change in the

population share of each switch varies linearly with the difference between the actual

payoff value of the switch and the average payoff value of the population. Moreover, we

observe that within 4-6 iterations, TROD reaches its evolutionary equilibrium.

Therefore, we observe that TROD enhances the performance of network holistically,

i.e., minimizes the network delay and maximizes the network throughput, while distribut-

ing the incoming data traffic, efficiently and dynamically, in SD-DCN in the presence of

IoT-devices.

5.2 FlowMan: The QoS-Aware Data Traffic Management

Scheme

We consider an SD-DCN with IoT devices and switches connected using access points

(APs). These heterogeneous IoT devices are capable of running different applications

such as Internet browsing, Email, VoIP calls, and video streaming [94]. As per Federal

Communications Commission (FCC) [94], video streaming applications in IoT devices

consume almost 104 times more bandwidth than normal applications such as browsing

72

5.2. FlowMan: The QoS-Aware Data Traffic Management Scheme

and calls. Therefore, we get that the flows generated from these video streaming appli-

cations are the elephant flows, whereas the other flows are mice flows. In such a scenario,

due to the unbalanced nature of data traffic, the switches handling the elephant flows

incur high delay, whereas the switches handling the mice flows incur low throughput. As

shown in Figure 5.5, the incoming flows can be discarded due to overflow or can replace

the existing flows, which results in high delay or low throughput, respectively. This, in

turn, degrades the overall performance of the SD-DCN.

Therefore, in this work, we introduce a QoS-aware stochastic data flow management

scheme, named FlowMan, for SD-DCN in the presence of heterogeneous flows. We use

a generalized Nash bargaining game to decide the Pareto optimal data rate to be allo-

cated to each SDN switch while considering the heterogeneous flows within the one-hop

network. Here, using a generalized Nash bargaining game, we achieve an intermediate

Pareto optimal throughput for the switches. Thereafter, using a distributed heuristic

method, i.e., a method for solving the bounded Knapsack problem, we decide the switch

and flow-rule association for ensuring optimal data flow management in SD-DCN.

Figure 5.5: Issues in Heterogeneous Flow Management in SD-DCN

5.2.1 System Model

We consider a part of SD-DCN with multiple switches, a centralized controller, and

multiple IoT devices and the SDN switches connected using access points (APs). We

73

5. QoS-Aware Data Traffic Management

consider that these IoT devices generate heterogeneous data-traffic such as Internet

browsing, Email, VoIP calls, and video streaming. Additionally, we consider that the

switches are heterogeneous in nature and have different TCAM capacity. We present

the SD-DCN network as a flow network G(V, E), where V and E denote the set of

vertices and the set of edges in the flow network, respectively. Here, we consider that

V = ⋃
L V L

I ∪ ⋃
L V L

S , where V L
I and V L

S represent the set of IoT devices and the set

of switches in the layer L of the flow network, respectively, L ≥ 0, and V 0
S = {∅}. We

consider that each edge eij ∈ E has a limited bandwidth Bij and Bij > 0, given that

eij �= 0. We consider two QoS parameters — throughput and delay — for evaluating the

performance of the network. The throughput and delay per flow depend on the allocated

capacity of the corresponding flow. In this work, we consider that the network flows are

comprised of multiple elephant (high-volume) and mice (low-volume) flows [95]. Hence,

we infer that there is a need to focus on ensuring both the optimal throughput and delay

of the network. We consider that each IoT device n ∈ V L
I generates F E

n (t) and F M
n (t) set

of elephant and mice flows, respectively, at time instant t, where |F E
n (t)|, |F M

n (t)| ≥ 0.

Therefore, the number of flows FL(t) in layer L of the network is as follows:

FL(t) =
∑

n∈V L
I

[|F E
n (t)| + |F M

n (t)|] (5.22)

We assume that there is sufficient space in the switches to place |FL(t)| rules, i.e.,
|FL(t)| ≤ ∑

k∈V
(L+1)

S

Rmax
k , where Rmax

k is the maximum flow-rules which can be accom-

modated at SDN switch k. On the other hand, each elephant flow fE
n (t) ∈ F E

n (t) and each

mice flow fM
n (t) ∈ F M

n (t) generate data with rate rE
n (t) and rM

n (t), respectively. There-

fore, the data-generation rate is given as Ψ(t) = ∑
fE

n (t)∈F E
n (t) rE

n (t)+
∑

fM
n (t)∈F M

n (t) rM
n (t).

Moreover, we consider that each SDN switch k ∈ V
(L+1)

S handles a set of installed rules

Rk(t), where Rk(t) ≤ Rmax
k . Therefore, we have:

74

5.2. FlowMan: The QoS-Aware Data Traffic Management Scheme

Rk(t) = |F e
k (t)| + |F m

k (t)| (5.23)

where F e
k (t) and F m

k (t) represent the set of elephant and mice flow-rules installed

in SDN switch k. Therefore, the throughput Tk(t) of SDN switch k, where Ψ(t) =∑
k∈V

(L+1)
S

Tk(t), is defined as follows:

Tk(t) =
∑

fE
n (t)∈F e

k
(t)

rE
n (t) +

∑
fM

n (t)∈F m
k

(t)
rM

n (t) (5.24)

Additionally, we consider that each SDN switch k has a processing capacity of μS
k (t).

Considering that the flow processing at SD-DCN follows a packet-centric approach and

following the work of Park and Schaar [91], the processing delay Dk(t) [96] is defined as

follows:

Dk(t) = D0
k +

μS
k (t)

Tk(t) − T 0
k (t)

(5.25)

where T 0
k denotes the minimum resource share of each switch k; D0

k is the minimum delay

for processing a packet, while considering the switch is idle, i.e., there is no packet in the

switch. In this work, our objective is to obtain an optimal association among the data

traffic flows and the switches for maximizing the network throughput and minimizing

the delay.

5.2.2 Justification for Using Generalized Nash Bargaining Game

As mentioned earlier, the problem of the optimal distribution of heterogeneous data-

flow among the available switches in SD-DCN to simultaneously ensure high throughput

and low delay is an NP-hard problem, as it can be mapped to the zero-one knapsack

problem [97]. To obtain a solution to this problem in polynomial time, we adopt a game-

theoretic approach. In SD-DCN, the aforementioned problem scenario can be visualized

75

5. QoS-Aware Data Traffic Management

in the form of a “bargaining" situation in which the switches bargain among themselves

to obtain their fair share of the data-flows. Here, the switches act cooperatively and

try to agree upon a distribution of flow-rules which ensures mutual benefit. Moreover,

in this work, the switches are also considered to be heterogeneous in terms of TCAM

capacity. Hence, to model the considered problem scenario and the aforementioned prop-

erties of SD-DCN, we use the generalized Nash bargaining game. Here, the generalized

Nash bargaining game not only takes into consideration the cooperative nature of the

switches but also perfectly captures the heterogeneity of switches by introducing the

Nash bargaining power of each switch. The Nash bargaining solution provides a Pareto

optimal solution (which is shown in the subsequent sections) for deciding the maximum

data-rate to be handled by each switch for ensuring high network throughput with less

delay. Hence, we infer that the generalized Nash bargaining game is the most suitable

technique for managing dynamic flow-traffic in the presence of multiple elephant and

mice flows in SD-DCN.

5.2.3 Game Formulation

To study the interaction among the switches and the IoT devices in the considered

problem scenario, we use generalized Nash bargaining game theory and propose a QoS-

aware dynamic data traffic management scheme, named FlowMan, for SD-DCNs with

IoT devices. Here, we consider that the switches act cooperatively to ensure high network

throughput and low processing delay. In FlowMan, the strategy of each switch is to

decide the optimal subset of flows to be handled by it. Based on the rule-space capacity

of the switches, we introduce the bargaining power α = {α1, · · · , αk, · · · , α|V L
S |}, where

αk denotes the bargaining power of switch k. Hence, we summarize the components of

the generalized Nash bargaining game in FlowMan, as follows:

1. SD-DCN switches act as the players and bargain among themselves to distribute

the set of flow rules to be installed.

76

5.2. FlowMan: The QoS-Aware Data Traffic Management Scheme

2. Data flows available in the network form the resource pool. Here, we only consider

the flows generated/handled by one-hop neighbors, i.e., switches and IoT devices.

3. Switches are heterogeneous in terms of TCAM capacity.

4. The bargaining power of each switch depends on its TCAM capacity.

5.2.3.1 Utility Function

In the proposed FlowMan game, we consider that each switch k ∈ V
(L+1)

S decides its

strategy, i.e., bargain, for distributing the one-hop network flows (including elephant and

mice flows) while ensuring high network throughput and low delay in data traffic. The

utility function Uk(·) of each switch k signifies the utilization of its capacity and TCAM

memory. Motivated by the work of Park and Schaar [91], we consider that Uk(·) needs
to ensure the following properties:

1. Each switch tries to maximize the utilization factor of its capacity. Therefore, each

switch k tries to increase Tk(t), while ensuring the constraint — Rk(t) ≤ Rmax
k .

2. Each switch k tries to reduce the overall network delay by reducing the packet

queuing delay Dk(t).

Therefore, we define Uk(·) for each switch as follows:

Uk(Tk(t)) =
λ

D0
k +

μS
k

(t)
Tk(t)−T 0

k

= λ(Tk(t) − T 0
k)

D0
k(Tk(t) − T 0

k) + μS
k (t)

(5.26)

where λ is a constant and λ > 0. Moreover, we consider that in FlowMan, each switch

k ensures a minimum payoff dk which is termed as its disagreement point. Disagreement

point is calculated as the equilibrium point while the players act non-cooperatively.

Here, we have — dk = Uk(T 0
k). Hence, in FlowMan, we ensure that the payoff of each

switch will be higher than Uk(T 0
k). Therefore, from Equation (5.26), we get — dk = 0.

77

5. QoS-Aware Data Traffic Management

Considering that each switch k handles Tk(t) amount of resource, we define a feasible

utility set S as — S = {· · · ,Uk(Tk(t)), · · · }. We get that S is nonempty, convex,

closed, and bounded. Additionally, we represent the disagreement point vector d as

— d = {· · · ,Uk(T 0
k), · · · }. Here, d is a set with elements having zero value. Thereby,

the bargaining problem is defined as a tuple < S, d >. We get that the Pareto optimal

solution exists in FlowMan as defined in Definition 5.2.

Definition 5.2. We define that U∗(t) is Pareto optimal, where U∗(t) = (· · · ,Uk(T ∗
k (t)), · · ·),

iff we have —

(· · · ,Uk(T ∗
k (t)), · · ·) ≥ (· · · ,Uk(Tk(t)), · · ·) (5.27)

As each switch has different bargaining power, we introduce the function F : S →
R

|V (L+1)
S |, where we have —

F (S, d) = ∏(
Uk(Tk(t)) − Uk(T 0

k)
)αk = ∏

Uk(Tk(t))αk

= {U ∈ B|U = α · T (t), ∑ αk = 1, αk ≥ 0, ∀k}
(5.28)

where T (t) = {T1(t), · · · , Tk(t), · · · , T|V (L+1)
S |(t)} and B is the bargaining set defined in

Definition 5.3.

Definition 5.3. The bargaining set B represents a set containing the Pareto optimal

payoff pairs F (S, d), and B ⊆ S.

Hence, based on the feasible utility set S and disagreement point vector d, the

optimization problem is defined as follows:

max
U∈S

F (S, d) (5.29)

On the other hand, the solution U∗ needs to satisfy the following constraints —

Uk(Tk(t)) > 0 and
∑

αk = 1, where αk ≥ 0, ∀k (5.30)

78

5.2. FlowMan: The QoS-Aware Data Traffic Management Scheme

5.2.4 Axioms for Generalized Nash Bargaining Solution

In this section, we examine the existence of the generalized Nash bargaining solution

(please refer to Theorems 5.1-5.4) in the context of FlowMan, while ensuring that the

following axioms are satisfied [91] — (1) Individual Rationality; (2) Feasibility; (3) Pareto

Optimality; (4) Independence of Irrelevant Alternatives; and (5) Independence of Linear

Transformations.

Theorem 5.1. Feasible utility set S is convex.

Proof. We consider that the feasible utility set S is convex, if for any U1,U2 ∈ S and

0 ≤ γ ≤ 1, we have —

γU1 + (1 − γ)U2 ∈ S

From Equation (5.24), we have — ∑
Tk(t) = Ψ(t). Therefore, we get:

S =
{
U

∣∣∣∣∣
∑ μS

k (t)Uk(Tk(t))
λ − D0

kUk(Tk(t))
= Ψ(t)

}
(5.31)

Here, we observe that, for any Tk(t) > T 0
k , we have, Uk(Tk(t)) > 0. Therefore, for

the convexity, we need to have:

f(γ) ≡
∑ μS

k (t)
(
γU1

k(Tk(t)) + (1 − γ)U2
k(Tk(t))

)
λ − D0

k

(
γU1

k(Tk(t)) + (1 − γ)U2
k(Tk(t))

) = Ψ(t) (5.32)

Therefore, we have:

f(γ) =

⎧⎪⎨
⎪⎩

∑ μS
k (t)U2

k(Tk(t))
λ−D0

k
U2

k
(Tk(t)) , if γ = 0

∑ μS
k (t)U1

k(Tk(t))
λ−D0

k
U1

k
(Tk(t)) , if γ = 1

(5.33)

On the other hand, to show that f(γ) is convex for 0 < γ < 1, the second derivative

of f(γ) needs to be non-negative. Therefore, we have:

d2f(γ)
dγ2 =

∑ 2λμS
k (t)D0

k

(
U1

k(Tk(t)) − U2
k(Tk(t))

)2[
λ − D0

k

(
γU1

k(Tk(t)) + (1 − γ)U2
k(Tk(t))

)]3 (5.34)

79

5. QoS-Aware Data Traffic Management

where μS
k (t) > 0, D0

k > 0, λ > 0, and (·)2 ≥ 0. Additionally, we have, Tk(t) > T 0
k ,

therefore (λ − D0
kU

1
k(Tk(t))) > 0 and (λ − D0

kU
2
k(Tk(t))) > 0. Thereby, we get that

the denominator is greater than zero. In other words, the second derivative of f(γ) is

non-negative. Hence, f(λ) is convex.

Theorem 5.2. In FlowMan, the function F (S, d) satisfies Pareto optimality.

Proof. We assume that there exists a point U ∈ S on the Pareto optimal front. However,

from Equation (6)1, we get that U∗ > U. Therefore, the assumption, that we made

earlier, is not true. Hence, through contradiction, we prove that the function F (S, d)

satisfies Pareto optimality.

Theorem 5.3. The function F (S, d) is independent of linear transformation.

Proof. We consider that linear transformation is performed over the feasible utility set S.

Therefore, the utility function Uk(Tk(t)) of each switch k is transformed to Uk(βkTk(t)+

ρk). Hence, we can rewrite Equation (5.29) as follows:

∏(
Uk(βkTk(t) + ρk) − Uk(βkT 0

k + ρk)
)αk

= ∏
βαk

k Uk(Tk(t))αk

(5.35)

Hence, we proof that the objective function is independent of the linear transforma-

tion.

Theorem 5.4. The function F (S, d) is independent of irrelevant alternatives.

Proof. We consider two feasible utility sets S and S′, where S′ ⊂ S. Additionally, we

consider that the Pareto optimal solution U∗ lies in both the set. Now, we assume that

there exists another Pareto optimal solution U′ in the feasible utility set S′. Therefore,

we have — U′ > U, which contradicts with the definition of Pareto optimal solution

(refer to Definition 12). Hence, we proof that the aforementioned assumption is not

true, which concludes the proof.

80

5.2. FlowMan: The QoS-Aware Data Traffic Management Scheme

5.2.5 Existence of Generalized Nash Equilibrium

We prove the existence of generalized Nash equilibrium by using variational inequality

(VI), as shown in Theorem 5.5.

Theorem 5.5. Given a set of flows and the corresponding data-rates, there exists a

generalized Nash equilibrium for each switch in the network.

Proof. In FlowMan, we aim to maximize function F (S, d), which ensures cooperative

benefit for the switches. Additionally, to prove that there exists a generalized Nash

equilibrium, we need to show that the Hessian matrix of F (S, d) is negative. We derive

the Karush-Kuhn-Tucker (KKT) conditions, which are as follows:

1. Stationary condition:

∇F (S, d) − ∇
∑

θkUk(Tk(t)) − ν∇
(∑ μS

k (t)Uk(Tk(t))
λ − D0

kUk(Tk(t))
− Ψ(t)

)
= 0 (5.36)

where θk and ν are Lagrangian multipliers.

2. Primal feasibility constraints:

∑ μS
k (t)Uk(Tk(t))

λ − D0
kUk(Tk(t))

= Ψ(t) (5.37)

Uk(Tk(t)) > 0 (5.38)

3. Dual feasibility condition:

θk, ν ≥ 0 (5.39)

4. Complementary slackness condition:

81

5. QoS-Aware Data Traffic Management

∑
θkUk(Tk(t)) = 0 (5.40)

Form primal feasibility and complementary slackness conditions, we get — θk = 0.

Hence, from stationary condition, we get that:

∇L =

⎡
⎢⎣· · · , αk

∏
l �=k

Ul(Tl(t))αl

Uk(Tk(t))
− νμS

k (t)λ
(λ − D0

kUk(Tk(t)))2
, · · ·

⎤
⎥⎦

T

(5.41)

Additionally, the Hessian matrix of F (S, d) is negative matrix [91], which concludes

the proof.

5.2.6 Analysis of Generalized Nash Bargaining Solution

Based on the KKT conditions as mentioned in the Section 5.2.5, we have ν �= 0, where

ν is a Lagrangian multiplier. Therefore, we get that —

ν =
αkUk(Tk(t))(αk−1) ∏

l �=k
Ul(Tl(t))αl(λ − D0

kUk(Tk(t)))2

νμS
k (t)λ

(5.42)

Here, ν and λ are constants. Hence, we rewrite Equation (5.42) as follows:

αk(λ − D0
kUk(T ∗

k (t)))2
μS

k (t)Uk(T ∗
k (t))

= αl(λ − D0
l Ul(T ∗

l (t)))2
μS

l (t)Ul(T ∗
l (t))

(5.43)

where k �= l, and k, l ∈ V
(L+1)

S . By replacing Uk(Tk(t)) with
λ(Tk(t)−T 0

k)
D0

k
(Tk(t)−T 0

k
)+μS

k
(t) (please

refer to Equation (5.26)), we get:

αkμS
k (t)

(D0
kTk(t) + μS

k (t))Tk(t)
= αlμ

S
l (t)

(D0
l Tl(t) + μS

l (t))Tl(t)
(5.44)

We know that ∑
Tk(t) = Ψ(t). Hence, from Equation (5.44), we get that —

82

5.2. FlowMan: The QoS-Aware Data Traffic Management Scheme

Tl(t) =
1

2αkμS
k (t)D0

l

(
−αkμS

k (t)μS
l (t) +

√
Φkl

)
(5.45)

where Tl(t) > 0, D0
l > 0, ζk = (D0

kTk(t) + μS
k (t)), and

Φkl =
[
(αkμS

k (t)μS
l (t))2 − 4αkαlμ

S
k (t)μS

l (t)ζkTk(t)D0
l

]
.

Figure 5.6: Workflow Diagram of FlowMan

5.2.7 Proposed Algorithm

From Section 5.2.6, we observe that, in SD-DCN, the controller can ensure efficient load

distribution using FlowMan, while ensuring that the data flows are fairly distributed

among the switches. The controller needs to calculate the optimal data rate T ∗
k (t) for

any switch k using a heuristic approach. In FlowMan, we use bisection method [98]

having a fixed tolerance ε > 0, as mentioned in Algorithm 5.2. Bisection method is used

to evaluate the optimal value for T ∗
k (t) as the upper and lower bounds of the utility

functions are known for the time instant t. Thereafter, using Equation (5.45), which is

derived based on the utility function Uk(Tk(t)), the controller calculates the optimal data

rate T ∗
l (t) for each switch l, where k �= l. Finally, the controller uses a bounded Knapsack

solution method [99], named FlowMan-Knapsack, to decide the optimal distribution of

data flows for each switch. The workflow diagram of FlowMan is presented in Figure

83

5. QoS-Aware Data Traffic Management

Algorithm 5.2 Data Flow Management in FlowMan
INPUTS:
1: Ψ(t), ε, ∪n∈V L

I
F E

n (t), ∪n∈V L
I

F M
n (t), Rmax

k , α, V
(L+1)

S , μS(t), D0(t)
OUTPUT:
1: F e

k (t), F m
k (t), ∀k ∈ V

(L+1)
S

PROCEDURE:
1: l ← 0 and h ← Ψ(t)
2: do
3: Tk(t) ← l+h

2
4: for each l ∈ V

(L+1)
S and l �= k do

5: Calculate Tl(t) using Equation (5.45)
 Obtained from the proposed Nash
bargaining game-theoretic model

6: end for
7: if

∑
Tk(t) ≤ Ψ(t) then

8: l ← Tk(t)
9: else

10: h ← Tk(t)
11: end if
12: while (h − l) < ε
13: F(t) ← (∪n∈V L

I
F E

n (t)) ∪ (∪n∈V L
I

F M
n (t))

14: for each k ∈ V
(L+1)

S do
15: F e

k (t), F m
k (t) ← FlowMan-Knapsack (Tk(t),F(t))

16: F(t) ← F(t)/(F e
k (t) ∪ F m

k (t))
17: end for
18: return F e

k (t), F m
k (t), ∀k ∈ V

(L+1)
S

84

5.2. FlowMan: The QoS-Aware Data Traffic Management Scheme

5.6.

5.2.7.1 Complexity Analysis

In FlowMan, two methods need to be executed sequentially. In the first method, i.e.,

the bisection method, the controller tries to find the optimal value for Tk(t). Based on

that, in the second method, the optimal data traffic associated with other switches are

calculated using the bounded knapsack method. The complexity of the bisection method

is O(|V (L+1)
S |), whereas, the complexity for bounded Knapsack method, i.e., FlowMan-

Knapsack, is O(H|V (L+1)
S |), where H = max{Rk(t)|∀k ∈ V

(L+1)
S }. Hence, the overall

complexity of FlowMan is O(H|V (L+1)
S |), as H ≥ 1. Thus, FlowMan has a complexity of

O(HC) for the overall network, where C = max{|V L
S |, ∀L}. Hence, we get that with the

increases in the number of switches in each layer, the complexity of FlowMan increases.

However, the complexity of FlowMan does not get affected by the increase in the number

of layers in the network.

5.2.8 Performance Evaluation

In this section, we analyze the performance of FlowMan through simulation by varying

the number of heterogeneous flows and the number of available switches.

5.2.8.1 Simulation Parameters

We simulated FlowMan on Python3-based simulation platform. We considered that the

switches and IoT devices are deployed randomly over the terrain of 10×10 km2, and each

IoT device generates a single flow. We considered that each flow generates data traffic

at a random rate. We considered that the threshold data rate is 0.1 million packets per

second (mpps) to separate the flows into two categories – elephant and mice flows, as

mentioned in Table 5.3. Additionally, we varied the number elephant flows, i.e., 5–10%

of the total flows [95]. We also considered that each switch has an infinite buffer size.

85

5. QoS-Aware Data Traffic Management

We performed the simulation for 50 independent iterations. Each iteration is executed

for 100 simulation seconds.

Table 5.3: Simulation Parameters
Parameter Value
Number of SDN switches 5, 10, 15
Number of flows 5000, 10000, 20000
Number of elephant flows 5–10%
Data generation rate per mice flow (0–0.1) mpps

Data generation rate per elephant flow [0.1–0.5] mpps

Maximum flow rules /switch 4000–8000 [5]
Simulation duration 100 sec

5.2.8.2 Benchmarks

The performance of FlowMan is evaluated by comparing with existing schemes — Flow-

Stat [100] and CURE [93]. In FlowStat, Bera et al. [100] proposed a flow-rule placement

scheme based on the per-flow statistics. In this work, the authors tried to accommodate

the maximum number of flows while finding an end-to-end path at once. We consider

FlowStat as it deals with similar problems such as forwarding switch selection for het-

erogeneous flows and flow-rules placement to maximize the throughput of the network.

On the other hand, in CURE, Maity et al. [93] proposed a scheme for flow management.

The authors considered that the flow-rules are updated according to the priority of the

switches. We consider CURE as it deals with the generic problems of rule placement

in SD-DCN such as rule update while ensuring the high throughput of the network. In

contrast to these existing schemes, FlowMan considers heterogeneous flows and aims to

ensure high QoS, i.e., high network throughput and low delay, in SD-DCN. Additionally,

FlowMan reduces an NP-hard problem to an NP-complete problem with the help of

the generalized Nash bargaining game within finite time duration and ensures a Pareto

optimal flow distribution among the switches in SD-DCN.

86

5.2. FlowMan: The QoS-Aware Data Traffic Management Scheme

 0

 0.25

 0.5

 0.75

 1

5000 10000 20000

(b) Number of Switch = 10
Number of Flows

 0

 0.25

 0.5

 0.75

 1

5000 10000 20000

(c) Number of Switch = 15
Number of Flows

 0

 0.25

 0.5

 0.75

 1

5000 10000 20000

(c) Number of Switch = 5

Pe
r-

Fl
ow

 T
hr

ou
gh

pu
t

(N
or

m
al

iz
ed

)

Number of Flows

 FlowMan FlowStat CURE

Figure 5.7: Per-Flow Throughput Analysis

 0

 0.25

 0.5

 0.75

 1

5000 10000 20000

(b) Number of Switch = 10
Number of Flows

 0

 0.25

 0.5

 0.75

 1

5000 10000 20000

(c) Number of Switch = 15
Number of Flows

 0

 0.25

 0.5

 0.75

 1

5000 10000 20000

(c) Number of Switch = 5

N
et

w
or

k
T

hr
ou

gh
pu

t
(N

or
m

al
iz

ed
)

Number of Flows

 FlowMan FlowStat CURE

Figure 5.8: Network Throughput Analysis

5.2.8.3 Performance Metrics

We evaluated the performance of FlowMan using the following metrics:

Per-Flow Throughput: Per-flow throughput is calculated as the average amount

of data processed for each flow over a certain duration, individually. In the presence

of heterogeneous flows, per-flow throughput not only depends on the number of

flow-rules installed at the switch but also on the data-rate associated with each

flow.

Network Throughput: Network throughput is calculated as the amount of data

processed cumulatively by the switches available in the network. It depends on

the flow-association of each switch and the data-rate of each associated flow.

Per-Flow Delay: Per-flow delay is calculated as the queuing delay and the pro-

cessing delay incurred by each flow at the associated switch. Due to the presence

of heterogeneous flows, unbalanced data traffic results in high delay per-flow for

the mice flows, when the elephant flows and mice flows are associated with the

same switch.

87

5. QoS-Aware Data Traffic Management

Network Delay: Network delay is calculated as the end-to-end delay incurred by

the flows available in the network. We claim that, with balanced load distribution,

the network delay can be minimized significantly.

 0

 0.25

 0.5

 0.75

 1

5000 10000 20000

(b) Number of Switch = 10
Number of Flows

 0

 0.25

 0.5

 0.75

 1

5000 10000 20000

(c) Number of Switch = 15
Number of Flows

 0

 0.25

 0.5

 0.75

 1

5000 10000 20000

(c) Number of Switch = 5

Pe
r-

Fl
ow

 D
el

ay

(N
or

m
al

iz
ed

)

Number of Flows

 FlowMan FlowStat CURE

Figure 5.9: Per-Flow Delay Analysis

 0

 0.25

 0.5

 0.75

 1

5000 10000 20000

(b) Number of Switch = 10
Number of Flows

 0

 0.25

 0.5

 0.75

 1

5000 10000 20000

(c) Number of Switch = 15
Number of Flows

 0

 0.25

 0.5

 0.75

 1

5000 10000 20000

(c) Number of Switch = 5

N
et

w
or

k
D

el
ay

(N

or
m

al
iz

ed
)

Number of Flows

 FlowMan FlowStat CURE

Figure 5.10: Network Delay Analysis

5.2.8.4 Results and Discussions

From Figure 5.7, we observe that the per-flow throughput decreases with the increase in

the number of flows, due to the increase in the number of elephant flows. However, using

FlowMan, the per-flow throughput remains higher than using FlowStat and CURE, as

FlowMan follows a Pareto optimal data-rate distribution for data flow management.

We observe that FlowMan distributes the incoming flows with heterogeneous data-rate

among the available switches, optimally. Hence, we yield that, using FlowMan, per-

flow throughput increases by 24.6–47.8%. On the other hand, Figure 5.8 depicts that

the network throughput increases significantly using FlowMan than using FlowStat and

CURE. The network throughput depends on the elephant flows, as well as on the mice

flows. We observe that, unlike FlowMan, the elephant flows get associated with a subset

88

5.3. Concluding Remarks

of switches using FlowStat and CURE, though these flows contribute almost 80% of the

overall flow [95].

On the other hand, Figure 5.9 depicts that per-flow delay decreases by 27.7% using

FlowMan than using FlowStat and CURE. In FlowMan, the traffic associated with each

switch is optimal, hence there is no significant change in the delay of the associated flows.

However, using FlowStat and CURE, the per-flow delay increases significantly because

these schemes do not take into consideration the presence of heterogeneous flows. We

yield that, FlowMan reduces the queuing delay by 77.8–98.7%. Similarly, Figure 5.10

depicts that the network delay increases exponentially with the increase in the number

of flows. This is due to the fact that queuing delay has a significant impact on the overall

network delay. Hence, we get that FlowMan ensures Pareto optimal flow distribution

among the switches. Thereby, the queuing delay per-flow reduces significantly, which,

in turn, reduces the overall network delay. Additionally, through theoretical analysis,

we observe that using FlowMan, the flow-setup delay remains constant for a fixed set

of switches. However, using the existing schemes – FlowStat and CURE, the flow-

setup delay increases linearly with the increase in the number of flows in the network.

Therefore, we observe that FlowMan enhances the performance of network universally,

i.e., enhances the network QoS, while ensuring the per-flow QoS is maintained.

5.3 Concluding Remarks

In this Chapter, two dynamic data traffic management schemes in SD-DCN are presented

considering that the IoT devices generate heterogeneous flows.

In this Chapter, we observed that dynamic data traffic management in SD-DCN is

an NP-complete problem. Therefore, we formulated an evolutionary game theory-based

TROD scheme to obtain a sub-optimal problem for data traffic management in SD-DCN

in the presence of IoT-devices. We observed that TROD ensures proper distribution of

data traffic among the switches while minimizing the network delay and maximizing the

89

5. QoS-Aware Data Traffic Management

throughput of the network. Moreover, through simulations, we observed that TROD

outperforms the existing schemes – Mobi-Flow and CURE, while distributing of data

traffic among the available switches and reducing the volumetric overhead per switch by

23.4-29.7%.

Thereafter, we yield that in the presence of heterogeneous flows, QoS-aware data flow

management in SD-DCN is also NP-hard. Therefore, we proposed FlowMan to address

the aforementioned problem. In FlowMan, we used the generalized Nash bargaining

game to obtain a Pareto optimal data-rate distribution for the switches. Thereby, we

achieved a sub-optimal problem which can be mapped to the bounded Knapsack prob-

lem, i.e., an NP-complete problem. Thereafter, we used a heuristic approach to solve

the reduced sub-optimal problem. Additionally, we analyzed that FlowMan follows the

axioms of the generalized Nash bargaining game. Through simulations, we observed that

FlowMan outperforms the existing benchmark schemes — CURE and FlowStat, while

ensuring high throughput and low delay. In particular, FlowMan reduces network delay

by 77.8–98.7% and increases network throughput by 24.6–47.8%, than using the existing

schemes.

90

Chapter 6

Broadcast Data Traffic

Management

In this Chapter, we introduce a game-theoretic data broadcasting scheme, named D2B,

for SD-DCN in the presence of mobile IoT devices. The bandwidth distribution among

the devices at the edge-tier of the fat-tree SD-DCN follows a leader-follower structure.

Hence, we use a single-leader-multiple-follower Stackelberg game for designing the D2B

scheme. In fat-tree SD-DCN, each switch broadcasts big-data among the IoT devices

and the servers at the edge-tier.

This Chapter is organized as follows. The system architecture considered in D2B

scheme is discussed in Section 6.1. Section 6.2 focuses on the formulation of D2B data

broadcasting scheme using single-leader-multiple-follower Stackelberg game. The algo-

rithms proposed for D2B scheme are discussed in Section 6.3. We evaluate the perfor-

mance of D2B in Section 6.4 while comparing with the existing schemes. Finally, Section

6.5 concludes this Chapter.

91

6. Broadcast Data Traffic Management

Figure 6.1: Schematic Diagram for Fat-Tree SD-DCN with IoT Devices

6.1 System Architecture

We consider an SD-DCN with fat-tree topology [21] in the presence of mobile IoT de-

vices. A fat-tree topology is a three-tier network architecture having three tiers — core,

aggregation, and edge. In SD-DCNs, fat-tree topology reduces blocking probability and

is resilient to single-point failure due to the presence of multiple paths among any pair

of nodes at the edge tier [21]. We consider that the mobile IoT devices are connected

with switches at aggregation tier through Access Points (APs), as shown in Figure 6.1.

In addition to the data-servers, each IoT device n ∈ As ⊆ A, where A and As denote

the set of IoT devices available at the edge-tier and the set of IoT devices connected

with switch s, respectively, at the edge-tier gets associated with a single switch s ∈ S at

the aggregation-tier, where S represents the set of switches. We consider that the IoT

92

6.1. System Architecture

devices are owned by the end-users. On the other hand, the servers at the edge-tier are

deployed by the network operators. The servers are used as storage devices only. We

consider that these switches are static in nature and connected to specific routers at the

core-tier. Additionally, we consider that the routers and the switches are deployed in a

grid fashion over the terrain. Moreover, we consider that the complete coverage of IoT

devices is ensured by the APs and the switches in the fat-tree SD-DCN.

Hence, to ensure throughput and delay-optimal big-data broadcast in the network

from the source IoT device at the edge-tier, we need to allocate an optimal bandwidth

to the IoT devices for downloading. Each IoT device n ∈ As is connected with switch s

at time instant t ∈ T, where T is the set of time slots in a day. Each device n needs to

decide the optimal data-rate rn(t) (in Kbps), while satisfying the following constraints:

rmin
n ≤ rn(t) ≤ rmax

n and rn(t) ≤ Rmax
s −

∑
r−n (6.1)

where rmax
n and rmin

n denote the maximum and minimum data-rate requirement of device

n; Rmax
s defines the capacity of switch s (in Kbps), and r−n ∈ {r1, · · · , rn−1, rn+1, · · · , r|As|}.
On the other hand, each switch s tries to ensure the use of its bandwidth Rmax

s

for optimal throughput, and allocates bandwidth to the connected devices As, while

satisfying the constraints in Equation (6.1). Thus, the main challenges faced to develop

the D2B scheme are as follows:

1. Modeling the D2B scheme, while considering the interaction between the IoT de-

vices and the switches.

2. Developing algorithm for each device to decide the optimum downloading data-rate

(in Kbps), while satisfying the constraints given in Equation (6.1).

3. Developing another algorithm for each switch s to decide the number of devices

to serve at a time, while satisfying the constraint mentioned as — lim
x→0+

x < ε and

lim
x→0−

x = 0, where 0 < ε << Rmax
s , and x = [Rmax

s −∑
n∈As

rn]. Hence, if switches

93

6. Broadcast Data Traffic Management

s1 and s2 have the unused capacity xs1 and xs2 , respectively, xs1 < xs2 signifies

that sfs1 ≺ sfs2 , where sfs1 and sfs2 signify the satisfaction factor of switches s1

and s2, respectively. We define the satisfaction factor of each switch s in Definition

6.1.

Definition 6.1. We define the satisfaction factor sfs of switch s as ratio of the optimal

availed throughput and the maximum capacity of switch s. Mathematically,

sfs(t) = [
∑

n∈As

rn(t)]/Rmax
s (6.2)

Conjecture 6.1. Based on Equation (6.1), we get that sfs of each switch s follows

constraint — sfs ≤ 1.

6.2 Proposed D2B Broadcast Scheme

To study the interaction between the switches and the IoT devices, we use a single-leader-

multiple-follower Stackelberg game. This is a non-cooperative game, where each follower

decides his/her/its strategy, non-cooperatively while satisfying the constraints imposed

by the leader. In this Chapter, we divide the entire network into multiple blocks. In each

block, an individual switch acts as the leader, and the devices, which are connected to the

switch, act as followers. The proposed D2B scheme is formulated as a pseudo-Cournot

competition, where each IoT device and the switch choose strategies, non-cooperatively

and distributively. On the other hand, each switch distributes the available capacity

among the connected IoT devices in order to achieve high performance with optimal

throughput and delay for big-data broadcast in fat-tree SD-DCN. The components of

D2B are as follows:

1. Each switch s, which acts as the leader, distributes the available bandwidth or

capacity among the connected IoT devices, distributively.

94

6.2. Proposed D2B Broadcast Scheme

2. Each IoT device n, which acts as a follower, decides its downloading data-rate rn,

while satisfying Equation (6.1).

3. Each switch s tries to maximize its satisfaction factor, while utilizing the bandwidth

capacity Rmax
s .

4. There are M chunks of data to be broadcasted by the source IoT device, where

size of each chunk is m kb.

5. Each IoT device n and each switch s tries to maximize the payoffs of the utility

functions Un(·) and Ps(·), respectively, in order to achieve throughput and delay-

optimal broadcast in fat-tree SD-DCN.

Definition 6.2. Pseudo cost coefficient ps(t) of switch s at time instant t is defined as

follows:

ps(t) = σsfs(t) (6.3)

where σ is a constant. σ acts as a scaling factor and defines the variance of throughput

of the switches in fat-tree SD-DCN.

6.2.1 Justification for Using Single-Leader-Multiple-Follower Stackel-

berg Game

The fat-tree SD-DCN follows a hierarchical architecture. In the fat-tree SD-DCN, the

routers at the core tier and the switches at the edge tier are connected with wired

links and the capacity of the links are fixed. On the other hand, the switches at the

aggregation-tier take lead over the IoT devices and the servers at the edge-tier. Hence,

we consider that the fat-tree SD-DCN follows a leader-follower architecture. Therefore,

the IoT devices at the edge-tier behave non-cooperatively, and the fat-tree SD-DCN

architecture follows the pseudo-Cournot competition. Additionally, each leader, i.e.,

95

6. Broadcast Data Traffic Management

each switch, decides its optimum strategy, distributively. Thereby, the throughput and

delay-optimal big-data broadcasting in fat-tree SD-DCN in the presence of IoT devices

is visualized as ‘oligopolistic market’. Hence, single-leader-multiple-follower Stackelberg

game-theoretic approach is the most suitable approach for dynamic big-data broadcast

in the presence of mobile IoT devices in fat-tree SD-DCNs, where the IoT devices at the

edge-tier act non-cooperatively.

6.2.2 Utility Function of Each IoT Device

Using the utility function Un(·), each IoT device n ∈ A finalizes the optimal data-rate

r∗
n(t) at time instant t. The data-rate rn(t) decided by each IoT device n depends on

the data-rates r−n(t) of the other IoT devices, indirectly. Thereby, each IoT device n

decides data-rate rn(t), non-cooperatively. The utility function Un(·) of each IoT device

n needs to ensure the following properties:

1. Each IoT device n tries to download data with the maximum achievable data-rate.

The utility function Un(·) is considered to be non-decreasing function.

2. The utility function Un(·) has a marginal value, which depends on rn(t). We

represent the marginal condition of Un(·) as follows:

∂2Un(·)
∂[rn(t)]2

< 0 (6.4)

3. The pseudo cost coefficient ps(t) has a negative influence on utility function Un(·).
On the other hand, satisfaction factor sfs(t) of each switch s varies proportionally

with ps(t).

Therefore, we design the utility function Un(·) as a concave function, which is repre-
sented as follows:

96

6.2. Proposed D2B Broadcast Scheme

Un(·) = β tan−1
(

e
− rn(t)−rn(t−δ)

rn(t−δ)

)
− ps(t)rn(t) (6.5)

where β is a constant and δ defines the time difference between two consecutive iterations.

Each IoT device n tries to maximize its payoff value by deciding an optimal downloading

data-rate, while satisfying constraints given in Equation (6.1). Hence, the objective of

each device n is as follows:

maximize Un(·) (6.6)

6.2.3 Utility Function of Each Switch

For each switch s ∈ S, we formulate the utility function Ps(·) for deciding the optimal
throughput of the switch and minimize the network delay. Each switch s tries to max-

imize its satisfaction factor sfs(t), while utilizing the total capacity Rmax
s . The pseudo

price coefficient ps(t) depends on sfs(t), as shown in Equation (6.3). Therefore, each

switch s tries to maximize its payoff, while maximizing its utility function Ps(·). Hence,
the objective of each switch s is as follows:

maximize Ps(·) (6.7)

We define the utility function Ps(·) of each switch s as multiplication of ps(t) and

sfs(t), where ps(t) and sfs(t) are defined in Equations (6.2) and (6.3), respectively.

Mathematically,

Ps(·) = ps(t)sfs(t) (6.8)

Hence, we observe that the utility function Ps(·) of each switch s follows a concave

hyperbolic curve.

97

6. Broadcast Data Traffic Management

6.2.4 Existence of Equilibrium

We define the generalized Stackelberg-Nash equilibrium of D2B, as follows:

Definition 6.3. The tuple < r∗
n(t), sf∗

s (t) > is considered as the generalized Stackelberg-

Nash equilibrium solution of switch s, if it satisfies the following inequalities:

Un(r∗
n(t), ·, p∗

s(t)) ≥ Un(rn(t), ·, p∗
s(t)) (6.9)

Ps(r∗
n(t), r∗

−n(t), p∗
s(t), Rmax

s) ≥ Ps(r∗
n(t), r∗

−n(t), ps(t), Rmax
s)

where r∗
n(t) and sf∗

s (t) are the optimum data-rate decided by each IoT device n and the

optimum satisfaction factor of switch s, respectively.

We ensure the existence of generalized Stackelberg-Nash equilibrium by using Varia-

tional Inequality (VI), as shown in Theorem 6.1. Moreover, in Section 6.2.5, we get the

optimum concave solution under constraints given in Equation (6.1).

Theorem 6.1. Given a fixed price coefficient ps(t), there exists a generalized Stackelberg-

Nash equilibrium, as there exists a VI for the utility function Un(·) of each IoT device

n.

Proof. In D2B, each IoT device n ∈ As(t) tries to maximize its payoff at time instant

t. Therefore, for the As(t) set of IoT devices connected with the switch s, we define the

overall utility function as follows:

Us(·) =
∑

n∈As(t)
Un(t) (6.10)

where Us(·) must satisfy the constraints given in Equation (6.1). We evaluate Jacobian

of matrix D, where D = ∇Us(·), as follows:

98

6.2. Proposed D2B Broadcast Scheme

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

...

− β[
2+

(
rn(t)

rn(t−δ)

)2
]

rn(t−δ)
− 2rn(t)

Rmax
s

−
∑

r−n(t)
Rmax

s

...

⎤
⎥⎥⎥⎥⎥⎥⎦

(6.11)

Thereafter, by neglecting [rn(t)
rn(t−δ)]

2 as [rn(t)
rn(t−δ)]

2 << 1, we get Hessian matrix ∇D

as follows:

∇D =

⎡
⎢⎢⎢⎢⎢⎣

− 2
Rmax

s
· · · 0

...

0 · · · − 2
Rmax

s

⎤
⎥⎥⎥⎥⎥⎦ (6.12)

Here, we observe that ∇D is a diagonal matrix, where each diagonal element is

negative. Therefore, we conclude that D2B ensures the existence of Stackelberg-Nash

equilibrium.

6.2.5 Solution of Proposed D2B

For each IoT device n, by applying the KKT condition on utility function Un(·) individ-
ually, we equate:

− β

rn(t − δ)
[
e

Δrn(t)
rn(t−δ)

] − 2rn(t) +
∑

r−n(t)
Rmax

s

= 0 (6.13)

where Δrn(t) = [rn(t) − rn(t − δ)]. Hence, we get:

[βRmax
s −

∑
r−n(t)]rn(t − δ) + 2r2

n(t − δ)
∑

r−n(t) + rn(t)
[
6r2

n(t − δ) +
∑

r−n(t)
]

− 4rn(t − δ)r2
n(t) + 2r3

n(t) = 0 (6.14)

Thereafter, using Cardano’s method [101], we get:

99

6. Broadcast Data Traffic Management

r∗
n(t) =

3

√√√√−B

2 +

√
B2

2 + A3

27 − 3

√√√√B

2 +

√
B2

2 + A3

27 (6.15)

where A = (c
a − b2

3a2) and B = d
a +

2b3

27a3 − bc
3a2 ; a = 2, b = −4rn(t − δ), c = 6r2

n(t − δ) +∑
r−n(t), and d = [βRmax

s − ∑
r−n(t)]rn(t − δ) + 2r2

n(t − δ)∑ r−n(t).

For simplicity, we consider that the IoT devices are homogeneous in nature, i.e.,

the maximum data-rate that can be supported by the IoT devices is fixed. Hence, we

get a = (|A| + 1), b = −4rn(t − δ), c = 2(|A| + 2)r2
n(t − δ) − (|A| − 1)rn(t − δ), and

d = βRmax
s rn(t − δ).

6.3 Proposed Algorithms for D2B

In order to reach the equilibrium in D2B, each IoT device and each switch decide their

respective strategies for throughput and delay optimal big-data broadcast in fat-tree SD-

DCN. Initially, each IoT device needs to be connected to a switch through an AP using

Algorithm 6.1. Using Algorithm 6.1, each node selects the nearest switch and registers

with that switch. This registration process needs to be repeated when that node comes

to another region covered by a different switch. Thereafter, each IoT device decides and

informs the optimum data-rate requirement to the concerned-switch using Algorithm

6.2 for downloading the broadcasted big-data. Using Algorithm 6.2, each IoT device

initializes the downloading data rate to be minimum, and by maximizing its own utility

function Un(·), IoT device n chooses an optimal downloading data-rate r∗
n(t). On the

other hand, using Algorithm 6.3, each switch decides an optimal pseudo price coefficient

for maximizing the network throughput and minimizing the network delay. Based on the

decided price coefficient, each IoT device tries to optimize the downloading data-rate,

which indicates the throughput of the network. Moreover, the price coefficient depends

proportionally on the number of IoT devices. Therefor, we get that if less number

of IoT devices are associated with a switch, the delay at the switch reduces and the

100

6.3. Proposed Algorithms for D2B

throughput also decreases. On the other hand, if the number of IoT devices connected

to a switch increases, the throughput increases, and the delay also increases. Hence,

using Algorithms 6.2 and 6.3 sequentially, D2B tries to ensure a trade-off between the

optimal network throughput and delay.

Algorithm 6.1 IoT Device Registration
INPUT: dns, ∀n ∈ A, ∀s ∈ S
 Euclidean distance
OUTPUT: {< n, s >, n ∈ A}
PROCEDURE:

1: for each s ∈ S do
2: Form a tuple of < n, s, dns >;
3: end for
4: Select the tuple having minimum dns value;
5: return {< n, s >, n ∈ A};

Algorithm 6.2 Optimal Throughput for Each IoT Device n

INPUTS:
1: rn(t − δ), rn(0) = 0, p∗

s(t), β
2: γ
 Data-rate increment factor in an iteration
OUTPUT: r∗

n(t)
PROCEDURE:

1: rn(t) = rmin
n

2: while Un(r∗
n(t), ·, p∗

s(t)) ≥ Un(rn(t), ·, p∗
s(t)) do

3: rn(t) = r∗
n(t);

4: Evaluate the modified data-rate rmod
n using Eq. (14)§;

5: r∗
n(t) = rmod

n ;
6: Call Algorithm 6.3;
7: end while
8: return r∗

n(t);

Complexity Analysis

In D2B, each IoT device registers with a switch using Algorithm 6.1. The computational

complexity of Algorithm 6.1 is O(|S|). Thereafter, each IoT device n selects an optimal

downloading data-rate using Algorithm 6.2. Considering that Algorithm 6.2 iterates K

times before reaching Stackelberg equilibrium. Therefore, the computational complexity

of Algorithm 6.2 is O(K). For each iteration, Algorithm 6.3 having computational

101

6. Broadcast Data Traffic Management

Algorithm 6.3 Optimal ps(·) for Each Switch s

INPUTS:
1: {r∗

n(t)|∀n ∈ As}, Rmax
s (t)

OUTPUT: p∗
s(t)

PROCEDURE:
1: sfs(t) =

As∑
n=1

r∗
n(t);

2: Calculate p∗
s(t) using Eq. (5)§;

3: return p∗
s(t);

complexity of O(1) is executed once. Therefore, the overall computational complexity

of D2B is O(|S| + K).

6.4 Performance Evaluation

In this section, we analyze the performance of D2B through simulation by varying the

number of heterogeneous IoT devices in terms of the bandwidth capacity.

6.4.1 Simulation Parameters

For the performance evaluation, we simulated using the MATLAB simulation platform.

The IoT devices are deployed randomly over a terrain of 1000×1000 m2 [102]. However,

the switches and the routers are deployed in a grid fashion, while ensuring full coverage.

We considered that the source IoT device generates 1000 number of data chunks, and

the size of each data chunk is 800 Mb, as shown in Table 6.1. Motivated by the device

distribution of the Internet [13, 103], we considered that the distribution of IoT device

capacities follows the distribution mentioned in Table 6.2 [103].

6.4.2 Benchmarks

The performance of D2B is evaluated while comparing with two existing schemes for

SD-DCNs — the Lock-Step Broadcast Tree based big-data broadcasting (LSBT) [13]

and the Multicast Fat-Tree Data Center Networks (DCN_INFOCOM) [21] schemes. In

102

6.4. Performance Evaluation

Table 6.1: Simulation Parameters
Parameter Value
Simulation Area 1000 m × 1000 m [102]
Number of Nodes 100 − 50000
Number of Switches 4
Number of Servers 3
Capacity of Nodes 128, 384, 1000, 5000 Kbps

Velocity of Source Node 5 m/s

Capacity of Switches 10 Gbps

Data chunks generated 1000
Size of each data chunk 800 Mb

Mobility model (MM) Random Gauss-Markov [104]
Random waypoint [105]

Table 6.2: Node Capacity Distribution
Capacity (Kbps) Nodes (%)
128 20
384 40
1000 25
5000 15

LSBT, Wu et al. [13] proposed a big-data broadcasting scheme, while forming a Lock

Step Broadcast Tree which is considered as basic unit of upload bandwidth. The authors

also considered that the source device, which has the maximum capacity in the network,

is at the root of the tree. On the other hand, in DCN_INFOCOM, Guo and Yang [21]

proposed a fat-tree based SD-DCN. In DCN_INFOCOM, the authors tried to minimize

the number of core switches needed to overcome the problem of over subscriptions.

Additionally, the authors overlooked the problem of balanced bandwidth distribution.

Moreover, these works do not consider the presence of the mobile IoT devices in fat-tree

SD-DCN. In the presence of IoT devices in fat-tree SD-DCN, we improve the network

performance for big-data broadcast, while ensuring optimal throughput and delay of the

network using D2B. Moreover, we simulated D2B with two mobility models — random

Gauss-Markov [104] and random waypoint mobility [105], and named the schemes as

D2B-GM and D2B-RWP, respectively.

103

6. Broadcast Data Traffic Management

 0

 0.2

 0.4

 0.6

 0.8

 1

100 500 1000 5000 10000 50000

A
ve

ra
ge

 B
an

dw
id

th
/N

od
e

(N
or

m
al

iz
ed

)

Number of Nodes

 LSBT
 DCN_INFOCOM

D2B-GM
D2B-RWP

Figure 6.2: Average Bandwidth Allocation per Node

 0

 0.2

 0.4

 0.6

 0.8

 1

100 500 1000 5000 10000 50000

B
an

dw
id

th
 U

til
iz

at
io

n
(N

or
m

al
iz

ed
)

Number of Nodes

 LSBT
 DCN_INFOCOM

D2B-GM
D2B-RWP

Figure 6.3: Total Bandwidth Utilization

6.4.3 Performance Metrics

We have evaluated the performance of D2B using the following metrics:

Bandwidth Utilization: We consider that the IoT devices are heterogeneous in

nature. Additionally, these devices are connected with the switches having limited

bandwidth. Hence, we calculate the bandwidth utilization factor of each IoT device

as a ratio of bandwidth usage for big-data broadcast and the maximum capacity

of the IoT device.

104

6.4. Performance Evaluation

 0

 0.2

 0.4

 0.6

 0.8

 1

100 500 1000 5000 10000 50000

A
ve

ra
ge

 D
el

ay
 (N

or
m

al
iz

ed
)

Number of Nodes

 LSBT
 DCN_INFOCOM

D2B-GM
D2B-RWP

Figure 6.4: Average Delay of the Network

 0

 0.2

 0.4

 0.6

 0.8

 1

100 500 1000 5000 10000 50000

M
ax

im
um

 T
im

e
R

eq
ui

re
d

(N
or

m
al

iz
ed

)

Number of Nodes

 LSBT
 DCN_INFOCOM

D2B-GM
D2B-RWP

0

0.0015

0.003

1000 5000 10000 50000

Figure 6.5: Maximum Time Required for Broadcasting 100 Packets

Network Delay: We define network delay as the total time required to complete

the big-data broadcast in the fat-tree SD-DCN. Hence, the network delay is defined

as the time duration needed for completion of data reception by all the IoT devices

in the fat-tree SD-DCN.

Successful Nodes: We consider an IoT device as a successful node if that IoT

device receives all the broadcasted data packets sent by the source IoT device,

successfully.

105

6. Broadcast Data Traffic Management

6.4.4 Results and Discussions

Figures 6.2 and 6.3 show that the bandwidth utilization increases using D2B than using

LSBT and DCN_INFOCOM.We observe that D2B yields 33-55% increase in the average

amount of bandwidth allocated per IoT device. In LSBT, big-data is broadcasted from

the main server having higher network capacity. In DCN_INFOCOM, the allocation

of bandwidth is done sequentially. On the other hand, using D2B, the bandwidth is

allocated per IoT device, distributively. Hence, using D2B, bandwidth utilization per IoT

device is higher than using other schemes — LSBT and DCN_INFOCOM. Additionally,

from Figure 6.3, we observe that the overall network bandwidth utilization increases by

at least 55.32% using D2B than using LSBT and DCN_INFOCOM.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

100 500 1000 5000 10000 50000

Su
cc

es
sf

ul
 N

od
es

Number of Nodes

 LSBT
 DCN_INFOCOM

D2B-GM
D2B-RWP

Figure 6.6: Successful Nodes in Broadcasting

From Figure 6.4, we observe that, using D2B, average delay decreases 25.83-62.4%

than using LSBT and DCN_INFOCOM. In D2B, due to an increase in the average

bandwidth allocated per IoT device, the overall network delay decreases. Moreover,

from Figure 6.5, we observe that using D2B, with the increase in the number of de-

vices, the total delay in data broadcasting increases linearly, whereas using LSBT and

DCN_INFOCOM, the total time required to complete the process increases exponen-

tially. From Figure 6.6, we observe that the number of IoT devices, which received

106

6.5. Concluding Remarks

broadcasted data packets successfully, is comparable using D2B and DCN_INFOCOM.

However, using LSBT, the source IoT device is considered to be at the root of the tree.

Hence, using LSBT, the IoT devices having a lesser capacity than the source IoT device

form the subtree, which includes the successful nodes. Thereby, using LSBT, the number

of IoT devices, which are successful in receiving the broadcasted packets, is lesser than

using D2B and DCN_INFOCOM. Moreover, we observe that the bandwidth distribu-

tion using D2B is temporal. Hence, we observe that in Figures 6.2-6.6, the results for

D2B-GM and D2B-RWP are almost similar. Thereby, we conclude that D2B ensures

efficient distribution of available bandwidth among the connected IoT devices. Hence,

we conclude that D2B ensures dynamic big-data broadcast in fat-tree SD-DCN in the

presence of mobile IoT devices with optimal throughput and network delay.

6.5 Concluding Remarks

In this Chapter, we formulated a single-leader-multiple-follower Stackelberg game theory-

based D2B scheme to ensure proper bandwidth utilization of the network for dynamic

big-data broadcast in fat-tree SD-DCN in the presence of heterogeneous mobile IoT

devices. We observed that D2B ensures the reduction in network delay in the presence

of the mobile IoT devices at the edge-tier of the fat-tree SD-DCN. Moreover, from

simulation, we observe that D2B outperforms the other existing schemes — LSBT and

DCN_INFOCOM. In particular, we observed that using D2B, the network throughput

increased by 55.32%, while ensuring at least 33% increase in the average bandwidth

allocation per IoT device, and reduction in the overall delay.

107

Chapter 7

Multicast Data Traffic

Management

In this Chapter, we use a single-leader-multiple-follower Stackelberg game for designing

the dynamic data multicasting scheme, named D2M, in SD-DCN. In D2M, the controller

takes strategic decision for rule placement among the switches, while ensuring efficient

load balancing. On the other hand, the switches are responsible for processing the

data packets. Additionally, we consider that the switches are capable of bisecting the

capacity (bandwidth), and a fraction of the available bandwidth is to be allocated for

each flow. The allocated bandwidth for each flow is not shared with other flows and

remains dedicated, if there is no change in network. Hence, in D2M, we consider that

the controller acts as the leader and the switches act as the followers.

This Chapter is organized as follows. The system architecture considered in D2M

scheme is discussed in Section 7.1, while mentioning the assumptions. Section 7.2 focuses

on the formulation of D2M using single-leader-multiple-follower Stackelberg game. The

algorithms proposed for D2M scheme are discussed in Section 7.3. We evaluate the

performance of D2M in Section 7.4 while comparing with the existing schemes. Finally,

Section 7.5 concludes this Chapter.

109

7. Multicast Data Traffic Management

Figure 7.1: Schematic Diagram of Fat Tree-based SD-DCN with IoT Devices

7.1 System Model

In this Chapter, we consider an SD-DCN, where DCN follows the fat-tree architecture.

A fat-tree is a network architecture having three tiers — core, aggregation, and edge.

The routers at the core-tier are responsible for connecting the intra-networks. We con-

sider that the routers have enough bandwidth to support the connected switches at the

aggregation-tier, as shown in Figure 7.1. On the other hand, the switches are responsible

for providing communication services to the end-devices at the edge-tier. Additionally,

we consider that the switches and the routers in the fat-tree DCN have limited ternary

content-addressable memory (TCAM). In other words, the flow-tables have limited num-

ber of flow-entries. We consider that each switch s ∈ S, where S is the set of switches,

110

7.1. System Model

provides services to Fs(t) set of heterogeneous flows at time instant t. Considering that

each IoT device generates at most one flow at time instant t, we have — |As(t)| = |Fs(t)|,
where As(t) ⊆ A, and As(t) and A denote the set of active devices in data generation and

the available heterogeneous IoT devices, respectively. These heterogeneous IoT devices

are mobile in nature and connected wirelessly with the switches at the aggregation-tier

through access points (APs). In addition to the IoT devices, the edge-tier includes data-

servers. These data-servers are connected with the switches at the aggregation-tier using

d wired connection, as shown in Figure 7.1.

Additionally, we consider that each SDN switch s ∈ S has a capacity of Cs (in

kbps). We consider that each flow fn ∈ ∪Fs(t), where n ∈ A, has a minimum data-rate

requirement which is denoted as rmin
n (in kbps). The maximum data-rate of the flows

generated by the heterogeneous IoT devices are constrained by hardware limitations. We

denote the maximum data-rate of flow fn as rmax
n (in kbps). Hence, the actual data-rate

rn(t) (in kbps) of each flow fn has to satisfy the following constraint:

rmin
n ≤ rn(t) ≤ rmax

n (7.1)

Therefore, at time instant t, the number of IoT devices which are getting served by

each switch s, needs to satisfy the following constraint:

Crem
s ≥

∑
fn∈Fs(t)

rn(t), ∀s ∈ S (7.2)

where Crem
s is the remaining capacity of switch s after allocating bandwidth to the data

center servers. Considering that each flow fd associated with data-server d ∈ D, where

D is the set of data-servers in the SD-DCN, handles data-rate rd(t), we define Crem
s as

follows:

Crem
s = Cs −

∑
fd∈Fs(t)

rd(t) (7.3)

111

7. Multicast Data Traffic Management

We consider that a set IoT devices A(t) ⊆ A generates a set of flows F(t) at time

instant t.Therefore, we have — F(t) = ⋃
s Fs(t). Additionally, we define an associative

variable xns, which is defined as follows:

xns =

⎧⎪⎨
⎪⎩

1, if fn ∈ Fs(t)

0, otherwise
(7.4)

Proposition 7.1. For each flow fn ∈ F(t), the following condition is true:

1 ≤
∑
s∈S

xns ≤ 4 (7.5)

Proof. In SD-DCN, we consider that flow-rule associated with each flow fn needs to be

installed at least one SDN switch in case of intra-pod communication. On the other

hand, the flow fn needs to be matched at most four intermediate SDN switches, as we

have considered two-tier fat-tree architecture. Therefore, we proof that the condition

mentioned in Equation (7.5) is true.

7.1.1 Assumptions

While designing D2M, we assume that:

1. We consider that each IoT device is always connected with one of the access points

available in SD-DCN.

2. We consider that the centralized controller controls the flow-rules to be installed

at the switches.

3. The controller can change its strategy of choosing an optimal source node at any

given instant if it finds a source node with high payoff.

4. Each IoT device, which is downloading data, is interested in a single flow.

112

7.2. Dynamic Data Multicasting (D2M) Scheme

7.2 Dynamic Data Multicasting (D2M) Scheme

7.2.1 Game Formulation

For modeling the interaction between the SDN switches and the controller, we use single

leader multiple follower Stackelberg game. In D2M, we consider that the controller acts

as the leader and installs the flow-rules in the SDN switches. Additionally, the controller

decides the source node of the flow for each destination. On the other hand, the SDN

switches, which act as the followers, decide their respective strategy, non-cooperatively.

The followers help the controller to manage the network properly while deciding the

amount of bandwidth to be allocated for each flow and optimize the usage of overall

capacity. D2M is formulated as a pseudo-Cournot competition. The components in the

D2M are as follows:

1. The controller acts as the leader. It decides the optimal route of for each flow and

flow-rules to be installed to which switches.

2. Each SDN switch act as a follower. The switches make a trade-off between the

associated flow-rules and the bandwidth allocated for each flow.

3. Each switch tries to maximize its satisfaction factor, which is defined in Definition

7.1 while maximizing the network throughput.

4. We consider that each flow fn, which is generated by IoT device n, comprises of

Mn amount of data (in Kb).

Definition 7.1. The satisfaction factor ρs(t) of each switch s is defined as the ratio of

amount of bandwidth allocated to Fs(t) flows and the capacity Cs of the switch. Mathe-

matically,

ρs(t) =

∑
fn∈Fs(t)

rn(t) +
∑

fd∈Fs(t)
rd(t)

Cs
(7.6)

113

7. Multicast Data Traffic Management

7.2.1.1 Justification for Single Leader Multiple Follower Stackelberg Game

In SDN, the tasks – network control and packet processing – are divided into two planes –

control and data planes, respectively. The switches contain the data plane and inform the

controller if there is a table-miss. On the other hand, the controller, which is associated

with the control plane, takes care of the flow routing and updates the flow-tables at

the switches. Hence, we consider that SD-DCN follows a leader-follower architecture.

Thereby, in order to model the interactions among the controller and the switches, we

consider single leader multiple follower Stackelberg game theoretic approach. In D2M,

the controller decides the optimal routing path among the source-destination pair, for

ensuring delay-optimal data multicasting. Thereafter, the switches decide the amount

of bandwidth to be allocated for each flow while ensuring the throughput-optimal data

multicasting. Hence, data multicasting in SD-DCN resembles an oligopolistic market

scenario. Hence, we infer that a single leader multiple follower Stackelberg game is the

most suitable approach for data multicasting in SD-DCN.

7.2.1.2 Utility Function of Controller

The utility function Uc(·) of the controller signifies the overall network delay for multi-
casting while maximizing the network lifetime. The controller decides the source node

for each flow in multicasting and the routing path while maximizing the payoff value of

utility function Uc(·). The utility function Uc(·) needs to satisfy the following properties:

1. With the increase in hop-count, the payoff value decreases.

2. With the increase in residual energy of the source IoT device, payoff value increases.

3. If the source node selected for a flow associated with a destination is serving other

flow(s) associated with other destination(s), the payoff value increases.

Therefore, we consider that the utility function Uc(·) of the controller is a linear

function and is defined as follows:

114

7.2. Dynamic Data Multicasting (D2M) Scheme

Uc(·) =
∑
s∈S

∑
fn∈Fs(t)

(
αn

Eres
n (t)

Emax
+ βn

hfn(t)
4 + γnan(t)

)
(7.7)

where Emax and Eres
n (t) denote the maximum and residual energy of IoT device n at

time instant t; hfn(t) denotes the hop-count associated with flow fn; and an(t) is a

binary variable and denotes the state of IoT device s. We defined an(t) in Definition 7.2.

In Equation (7.7), αn, βn, and γn are constants specified for flow fn. These constants

ensure that the associated coefficients have similar numeric impact on the payoff value

of utility function Uc(·). The controller tries to maximize Uc(·), while ensuring the

constants mentioned in Equations (7.2) and (7.5).

Definition 7.2. We consider that each IoT device n have two states — idle and active.

Additionally, we consider that the IoT devices at idle state has zero energy consumption,

whereas the energy consumption of the IoT devices in active state is finite and positive.

Therefore, the binary variable an(t) of IoT device n is defined as follows:

an(t) =

⎧⎪⎨
⎪⎩

1, if IoT device n is in active state

0, otherwise
(7.8)

7.2.1.3 Utility Function of Each Switch

The utility function Us(·) of each switch s signifies the utilization of capacity of the

switch, and the flow-associated delay. Each switch decides the amount of bandwidth to

be allocated to each flow fn ∈ Fs(t), while maximizing the payoff value of the utility

function Us(·). Hence, Us(·) must satisfy the following properties:

1. With the increase in the satisfaction factor ρs(t), the payoff value increases.

2. With the increase in each flow-associated delay, the payoff value decreases.

3. With the increase in overall delay associated with Fs(t) flows, the payoff value

decreases.

115

7. Multicast Data Traffic Management

Therefore, we define the utility function Us(·) as follows:

Us(·) = ζs

∑
fn∈Fs(t)

rn(t)
rmax

n

+ φs

∑
fn∈Fs(t)

Mn

rn(t)
+ ϕsρs(t) (7.9)

where ζs, φs, and ϕs are constants for switch s. These constants ensure that the as-

sociated coefficients have similar numeric impact on the payoff value of utility function

Us(·). The first and second terms in Equation (7.9) signify the utilization of capacity

per flow and the flow-associated delay, respectively. Hence, each switch aims to decide

an optimal data-rate for each flow fn ∈ FS(t), while maximizing the payoff value of Us(·)
and satisfying the constraints mentioned in Equations (7.1) and (7.2).

7.2.2 Existence of Nash Equilibrium

We consider the Nash equilibrium of D2M, as defined in Definition 7.3. We get that at

the Nash equilibrium point, the players cannot increase their payoff value by deviating

from the equilibrium point.

Definition 7.3. We define the Nash equilibrium point as a tuple of r∗
n(t) and n∗, where

n∗ and r∗
n(t) represent the optimum source node for flow fn and the optimum bandwidth

allocated to IoT device n∗, respectively. The Nash equilibrium point needs to satisfy the

following constraints:

Uc(Eres
n∗ (t), hfn∗ (t), an∗(t), Eres

−n∗(t), hf−n∗ (t), a−n∗(t)) ≥

Uc(Eres
n (t), hfn(t), an(t), Eres

−n∗(t), hf−n∗ (t), a−n∗(t)) (7.10)

Us(r∗
n(t), r∗

−n(t)) ≥ Uc(rn(t), r∗
−n(t)) (7.11)

where a−n∗(t) = {ak∗(t)|∀fk ∈ F(t) and k �= n}. Similarly, we can define Eres−n∗ and

116

7.2. Dynamic Data Multicasting (D2M) Scheme

hf∗
−n
(t). On the other hand, r∗−n(t) = {r∗

p(t)|∀p ∈ Fs(t) and p �= n}

We get that D2M follows a finite perfect information game theoretic approach. Ad-

ditionally, the players in D2M follow pure strategies. Therefore, using the backward-

induction method, we can ensure that there exists at least one Nash equilibrium point

in D2M [106].

7.2.3 Theoretical Analysis of D2M Scheme

The controller selects its optimal strategy based on preference relation of the available

strategies. For example, we consider that there are two flows f1 and f2, and IoT devices

n′ and n′′ have the data for multicasting, i.e., these devices are probable source nodes.

We consider that the controller has a preference relation —

(f1 → n′, f2 → n′) 	 (f1 → n′′, f2 → n′′) 	 (f1 → n′, f2 → n′′) 	 (f1 → n′′, f1 → n′)

(7.12)

based on the following information:

Uc(·)|(f1→n′,f2→n′) 	 Uc(·)|(f1→n′′,f2→n′′) 	 Uc(·)|(f1→n′,f2→n′′) 	 Uc(·)|(f1→n′′,f1→n′)

(7.13)

On the other hand, each switch s decides the amount of bandwidth to be allocated

for each flow fn ∈ Fs(t). Using Karush-Kuhn-Tucker (KKT) condition, we get:

L = Us(t) −
∑

fn∈Fs(t)
λ1,n(rn(t) − rmin

n) +
∑

fn∈Fs(t)
λ2,n(rn(t) − rmax

n)

− λ3[Cs −
∑

fn∈Fs(t)
rn(t) −

∑
fd∈Fs(t)

rd(t)] (7.14)

117

7. Multicast Data Traffic Management

where λ1,n, λ2,n, where fn ∈ Fs(t), and λ3 are Lagrangian multipliers. Additionally, we

have:

λ1,n, λ2,n, λ3 ≥ 0, ∀fn ∈ Fs(t) (7.15)

λ1,n(rn(t) − rmin
n) = 0

λ2,n(rn(t) − rmax
n) = 0

⎫⎪⎬
⎪⎭ , ∀fn ∈ Fs(t) (7.16)

λ3

⎛
⎝Cs −

∑
fn∈Fs(t)

rn(t) −
∑

fd∈Fs(t)
rd(t)

⎞
⎠ = 0 (7.17)

Hence, performing ∇rn(t)L = 0, we get:

r∗
n(t) = [Mn

φs
]

1
2

(
ζs

rmax
n

+ ϕs

Cs

)− 1
2

(7.18)

Additionally, we get that ∇2
rn(t)L ≤ 0. Hence, we get that at rn(t) = r∗

n(t), Us(·) is
maximized.

7.3 Proposed Algorithms

In D2M, initially the controller decides the xns ∈ {0, 1}, ∀fn ∈ F(t), and tries to minimize

overall network delay by using Algorithm 7.1. We assume that the controller has the

knowledge that the IoT devices are connected to which access points (APs) and the

corresponding SDN switches. Moreover, we consider that the controller knows the set

of IoT devices which are interested in downloading the data. On the other hand, using

Algorithm 7.2, each switch s decides the amount of bandwidth to be allocated to the

associated flows Fs(t), while satisfying the constraints mentioned in Equations (7.2)

and (7.3). Algorithm 7.2 needs to be executed by each switch, individually and non-

cooperatively. The time complexity for Algorithm 7.1 is O(max(|F||S|, |S||F|)). On the

other hand, the time complexity for Algorithm 7.2 is O(K), where K ∈ R
+. Therefore,

118

7.4. Performance Evaluation

the over complexity of D2M is O(max(|F||S|, |S||F|) + K) ≈ O(max(|F||S|, |S||F|)).

Algorithm 7.1 Optimal Flow Association Vector
INPUTS:

1: A, A(t), F(t), F(t), S
2: Eres

n (t), Emax, hfn(t), an(t), ∀fn ∈ F

3: αn, βn, γn

OUTPUT:
1: {xns}, ∀fn ∈ F

PROCEDURE:
1: Find Cartesian product of F and S

2: do
3: Chose a vector of {fn, s|∀fn ∈ F}
4: Calculate Un(·) using Equation (7.7);
5: while each element in Cartesian set is not visited for |S| times;
6: Calculate a preference relation among the calculated Un(·) values
7: Select the vector with highest preference value
8: return Corresponding {xns}, ∀fn ∈ F

Table 7.1: Simulation Parameters
Parameter Value
Simulation Area 1000 m × 1000 m

Number of Nodes 1000-50000
Number of Switches 4
Number of Servers 3
Velocity of Source Nodes 5 m/s

Capacity of Switches 10 Gbps

Data chunks generated 1000
Size of each data chunk 800 Mb

Mobility model (MM) Random Gauss-Markov

7.4 Performance Evaluation

In this section, we analyze the performance of D2M through simulation by varying the

number of heterogeneous IoT devices in terms of the bandwidth capacity.

119

7. Multicast Data Traffic Management

Algorithm 7.2 Optimal Data-rate for Each Flow
INPUTS:

1: Fs(t), Cs; rd(t), ∀fd ∈ Fs(t); rmin
n , rmax

n , Mn, ∀fn ∈ Fs(t)
2: ζs, φs, ϕs

3: δ
 Increment factor
OUTPUT:

1: {r∗
n(t)}, ∀fn ∈ Fs(t)

PROCEDURE:
1: for each fn ∈ Fs(t) do
2: r∗

n(t) ← rmin
n

3: end for
4: Calculate Us(·) using Equation (7.9)
5: do
6: for each fn ∈ Fs(t) do
7: rn(t) ← r∗

n + δ
8: if thenrn(t) < rmax

n

9: Uprev
s (·) ← Us(·)

10: Calculate Us(·) using Equation (7.9)
11: if thenUs(·) ≥ Uprev

s (·)
12: r∗

n(t) ← rn(t)
13: end if
14: end if
15: end for
16: while There is any change in {r∗

n(t)}, ∀fn ∈ Fs(t)
17: return {r∗

n(t)}, ∀fn ∈ Fs(t)

120

7.4. Performance Evaluation

7.4.1 Simulation Parameters

For the performance evaluation, we simulated using JAVA-based platform and deployed

the IoT devices randomly over a terrain of 1000 × 1000 m2. However, the switches and

the routers are deployed in a grid fashion, while ensuring full coverage. We considered

that the source IoT devices generate 1000 number of data chunks, and the size of each

data chunk is 800 Mb, as mentioned in Table 7.1. Motivated by the device distribution

of the Internet [13], we considered that the distribution of IoT device capacities follows

the distribution mentioned in Table 7.2 [103].

Table 7.2: Node Capacity Distribution
Capacity (Kbps) Nodes (%)
128 20
384 40
1000 25
5000 15

7.4.2 Benchmarks

The performance of D2M is evaluated while comparing with two existing schemes for

DCNs — the Lock-Step Broadcast Tree based big-data broadcasting (LSBT) [13] and

the Multicast Fat-Tree Data Center Networks (BLO) [21] schemes. In LSBT, Wu et

al. [13] proposed a big-data broadcasting scheme, while forming a Lock Step Broadcast

Tree. The authors also considered that the source device, which has the maximum

capacity in the network, is at the root of the tree. On the other hand, in BLO [21],

Guo and Yang proposed a fat-tree based DCN. In BLO, the authors tried to minimize

the number of core switches needed to overcome the problem of over subscriptions.

Additionally, the authors overlooked the problem of balanced bandwidth distribution.

Moreover, these works do not consider SD-DCN in the presence of mobile IoT devices.

In D2M, we improve the network performance for data multicasting, while ensuring

optimal throughput and delay of the network.

121

7. Multicast Data Traffic Management

7.4.3 Performance Metrics

We evaluate the performance of D2M using the following metrics:

Network Delay: We define network delay as the total time required to complete

the data multicasting in SD-DCN.

Hop-Count for Network Flows: We calculate the overall hop-count for the data

multicasting. With the increase in hop-count, the real-timeliness of the multicasted

data degrades.

Network Throughput: The network throughput signifies that the amount of

data successfully transmitted from the source node to the destination. With effi-

cient load balancing, network throughput increases significantly.

 0

 0.25

 0.5

 0.75

 1

1000 5000 20000 50000

(b) Hop-Count

H
op

-C
ou

nt
 (N

or
m

al
iz

ed
)

Users

 D2M LSBT BLO

 0

 0.25

 0.5

 0.75

 1

1000 5000 20000 50000

(c) Network Throughput

Th
ro

ug
hp

ut
(N

or
m

al
iz

ed
)

Users

 D2M LSBT BLO

 0

 0.001

1000 5000 20000 50000

(a) Network Delay
Users

 0.2
 0.4
 0.6
 0.8

 1

D
el

ay
 (N

or
m

al
iz

ed
)

 D2M LSBT BLO

Figure 7.2: Performance Analysis of D2M

7.4.4 Results and Discussions

Figure 7.2(a) depicts that using D2M, the network delay decreases by 21.32% and 99.29%

than using BLO and LSBT, respectively. In LSBT, delay increases significantly due to

the fact that LSBT multicasts data in intra-networks. Hence, only after it reaches to

a server at the edge-tier, the data gets multicasted in the inter-network. On the other

hand, the network delay using BLO is higher than D2M due to inefficient network load

balancing. Similarly, from Figure 7.2(b), we observed that the hop-count using LSBT is

122

7.5. Concluding Remarks

significantly low as the source IoT device multicasts data in the intra-network. Therefore,

in fat-tree architecture, LSBT cannot ensure data transfer to each IoT device. However,

we yield that using D2M, the hop-count reduces by 3.69-7.44% than using BLO. We

observe that D2M ensures efficient load balancing in SD-DCN.

On the other hand, from Figure 7.2(c), we observed that using D2M, the network

throughput increases by 6.13% and 95.32% than using BLO and LSBT, respectively.

As mentioned earlier, using LSBT, the source node can only multicast data in intra-

network. Therefore, network throughput reduces significantly. The network throughput

using D2M is comparable with the throughput achieved using BLO, as both schemes are

designed for DCN with fat-tree architecture. However, as D2M is designed for SD-DCN,

the controller has an overview of the network, which BLO lacks in. Thereby, we observe

that D2M ensures high utilization of network capacity while distributing the network

load efficiently compared to the existing schemes — LSBT and BLO.

7.5 Concluding Remarks

In this Chapter, we formulated a single leader multiple follower Stackelberg game-based

D2M scheme to ensure high utilization of network capacity and efficient load balancing in

SD-DCN. We observed that D2M ensures the reduction in network delay in the presence

of mobile IoT devices. Additionally, using D2M, network throughput increases. From

the simulation, we observed that D2M outperforms the other existing schemes — LSBT

and BLO. In particular, we observed that using D2M, the network throughput increased

by 6.13-95.32% than using existing schemes, while ensuring 21.32-99.29% reduction in

delay.

123

Chapter 8

Multi-Tenant Flow-Table

Partitioning

In this Chapter, we introduce a utility game theory-based flow-table partitioning scheme,

named BIND, for maximizing the network sustainability and minimizing the network

overhead and delay in the distributed multi-tenant SDN. We use utility game to decide

the flow-rules to be replaced while ensuring fairness among the controllers. In order to

ensure fairness among the multi-tenant controllers, we use a blockchain-based flow-table

partitioning. In BIND, we consider that the flow-tables are virtually owned by each

controller. Hence, to replace any flow-rule, the controllers need to decide the flow-rule

unanimously, in which blockchain plays a key role. In BIND, on receiving a Packet-In

message, the controller checks for the free flow-table space, and installs the flow-rule if

ternary content-addressable memory (TCAM) is available. Otherwise, it requests other

controllers to elect a subset of flow-rules which are eligible to be replaced. Thereafter,

the controller selects a flow-rule having the highest payoff in the proposed utility game-

based scheme. In BIND, we also introduce the flow-priority, which helps in ensuring

network sustainability.

This Chapter is organized as follows. The system architecture considered in BIND

125

8. Multi-Tenant Flow-Table Partitioning

Figure 8.1: Schematic Diagram of Multi-Tenant SDN

scheme is discussed in Section 8.1, while mentioning the assumptions. Section 8.2 focuses

on the formulation of BIND using single-leader-multiple-follower Stackelberg game. The

algorithms proposed for BIND scheme are discussed in Section 8.3. We evaluate the

performance of BIND in Section 8.4 while comparing with the existing schemes. Finally,

Section 8.5 concludes this Chapter.

8.1 System Model

In this Chapter, we consider a distributed multi-tenant SDN comprising of multiple

SDN-controllers and multiple SDN-switches. Each switch s ∈ S, where S represents a

set of SDN switches, is connected with a set C of SDN controllers, as shown in Figure

8.1. Each switch s ∈ S has a flow-rule capacity of ρs. The controllers are not energy

constrained and have access to the S set of switches, and can change the flow-rules of

the shared flow-tables as per requirement. The controllers use permissioned blockchain

126

8.1. System Model

network [107] to record and verify the changes in the flow-tables. We consider that, after

receiving a Packet-In message, the concerned controller initiates a transaction having

flow replacement information, while considering that the Packet-In messages are not

correlated. The transactions are digitally signed. The controller generates a block for

each transaction and adds it to the blockchain. We consider that each IoT device n ∈ Ac

registers to controller c ∈ C for data transmission, where Ac denotes a set of IoT devices

connected with controller c. Within a duration of Δ, each IoT device n generates Fn(Δ)

set of flows and each controller c receives Fc(Δ) set of Packet-In messages. Therefore,

we get that:

Fc(Δ) ⊆
⋃

n∈Ac

Fn(Δ) (8.1)

Additionally, we consider that each controller c sets the priority for each flow-rule

based on the type, i.e., mice or elephant flow, and the content of the flow1, where

P represents the set of priorities of the flows. The switches have limited TCAM space,

hence, in a dynamic network, the flow-rules may need to be replaced frequently. However,

the priority ηf of each flow f ∈ ⋃
c Fc(·) ensures the sustainability of the network, as

defined in Definition 8.1. We consider a flow to be an active flow if it has transmitted

data within δ duration.

Definition 8.1. We define the sustainability of the network, ζ, as the percentage of

flows not blocked by the flows having low priority. In other words, the sustainability of

the network varies proportionally with the number active flow with high priority which

are not interrupted by any flow with low priority. Mathematically,

ζ = 1 −

∣∣∣∣
{

fi ∈ ⋃
c

Fc(·)|(xfi
= 1, xfj

= 0, ηfi
< ηfj

)
}∣∣∣∣∣∣∣∣

{
fi ∈ ⋃

c
Fc(·)

}∣∣∣∣
(8.2)

1We consider that the controller identifies the content of the flow based on the received meta-data
along with Packet-In message.

127

8. Multi-Tenant Flow-Table Partitioning

where xf is binary variable and denotes the presence of the flow-rule in flow-table cor-

responding to active flow f . Therefore, we have:

xf =

⎧⎪⎨
⎪⎩

1, if rule for active flow f is installed in flow-table

0, otherwise
(8.3)

Problem Scenario We consider a distributed multi-tenant SDN in the absence of a

centralized controller. Multiple controllers share the same flow-space among themselves.

We consider that the controller follows the soft flow-table partitioning in the proposed

SDN. Hence, it may lead to a monopoly situation, where a subset of controllers handle

a huge number of flows and modify the flow-rules accordingly. To avoid such a scenario,

in this Chapter, we aim to propose a blockchain-based flow-table partitioning scheme

for distributed multi-tenant SDNs in the absence of a centralized SDN-controller.

Assumptions To design the scheme for blockchain-based flow partitioning in dis-

tributed multi-tenant SDNs, we assume that:

1. There is no centralized SDN-controller to coordinate in multi-tenant SDN.

2. The SDN-controllers do not misbehave and cooperate.

3. The controllers are capable of ensuring the validity of the metadata of Packet-In

messages.

8.2 BIND: The Proposed Blockchain-Based Flow-Table Par-

titioning Scheme

To design the interactions among the SDN-switches at the data plane and the SDN-

controllers at the control panel, we use a utility game [108, 109]. This is a cooperative

game, where the SDN-controllers act cooperatively in sharing the space of the flow-

tables while ensuring the sustainability of the network, i.e., the high priority flows are

128

8.2. BIND: The Proposed Blockchain-Based Flow-Table Partitioning
Scheme

not blocked by the low priority flows. Therefore, in the proposed scheme, BIND, the

controllers are the players. On the other hand, the flow-space or the flow-tables are

considered to be resources, which need to be shared among the player optimally, while

ensuring the sustainability of the network. Moreover, the controllers need to ensure that

the optimal network throughput is achieved.

8.2.1 Justification for Using Utility Game

For efficient flow-table partitioning, we need to ensure that the monopoly is not present

among the controllers. Additionally, the controllers need to ensure network sustainabil-

ity with optimal throughput. Due to the absence of any centralized coordinator, the

controllers decide a subset of flow-rules which can be replaced. Thereafter, they decide

which flow-rule to be replaced using cooperation. The utility game plays an important

role in the aforementioned process. The actions of the controllers get registered in the

blockchain, whenever there is a change in the flow-table. To generate the payoff values

of the utility functions, the controllers refer to the previous blocks in the blockchain.

Thereby, we infer that the utility game along with the blockchain among the controllers

ensures that the controllers get a fair chance to update the flow-table. Additionally, high

network sustainability is ensured.

8.2.2 Game formulation

To achieve optimal flow-table partitioning, we use utility game. In the proposed blockchain-

based flow-table partitioning scheme, named BIND, the controllers act as the players and

choose strategies, i.e., flow-rule replacement, for ensuring network sustainability, while

ensuring high network throughput. The controllers use the blockchain to record the

flow-rule updates as blocks in the multi-tenant SDN. In the absence of a centralized

coordinator, the controllers use cooperation to ensure the fair chance in performing

the flow-rule update. Thereby, using blockchain and utility game theory, the proposed

129

8. Multi-Tenant Flow-Table Partitioning

scheme, BIND, ensures to avoid monopoly among the controllers, which is a significant

drawback of the soft flow-table partitioning. In BIND, each block in the blockchain

encapsulates the following information:

1. Controller-Specific Flow-Rule Replacement Counter: Each controller c ∈ C incre-

ments the flow-rule replacement counter, Cc, and append the information in the

corresponding block.

2. Total Number of Flow-Rule Replacement: It represents the total number of flow-

rule replacement R occurred after the last network update. This counter is con-

sidered to be a global counter.

3. Tolerable Waiting Time: The controllers update the tolerable waiting time Tf for

each flow-rule f , when there is a change in the flow-table. The controllers follow

an O(K) Markov predictor to update Tf , ∀f [110], where K is constant.

4. Elapsed Time: The controllers update the elapsed time after recent use, tf , for

each flow f , which signifies the information of the least recently used flow-rules.

5. Flow-Rule Priority: The priority ηf of the newly installed flow-rule f is considered

to be the same as the installed flow-rule priority. The controllers refer to this

parameter to identify the subset of flow-rules that are eligible for replacement in

the flow-tables.

8.2.3 Replacement Eligibility Factor for Each Flow-Rules

Each controller c calculates the payoff of each flow-rule f ∈ Fc(·) while considering

the two parameters — tolerable waiting time Tf and elapsed time tf . Based on these

parameters, the controllers calculates the eligibility of the flow-rules to be replaced. We

define the replacement-eligibility factor Ef for each flow-rule f in terms of probability,

as mentioned in Definition 8.2.

130

8.2. BIND: The Proposed Blockchain-Based Flow-Table Partitioning
Scheme

Definition 8.2. Replacement-eligibility factor Ef of each flow-rule f is defined as the

ratio of the predicted duration before receiving the next packet for flow-rule f and tolerable

waiting time (predicted). Therefore, we get:

Ef =
Tf − tf

Tf
(8.4)

Therefore, we get that in BIND, the flow-rule f with high replacement-eligibility

factor has higher probability to get replaced by the flow-rule associated with the new

incoming flow fn, while considering the following constraint is satisfied:

ηf < ηfn (8.5)

where ηf and ηfn denote the priorities of the flow-rules f and fn, respectively. Each

controller elects a flow-rule having maximum Ef value which may be replaced.

8.2.4 Utility Function of Each Controller

Based on the elected flow-rule, each controller c calculates the payoff of utility function

Uc(·). The utility function Uc(·) signifies the probability of the flow-rule to replaced

associated with controller c. In order to design the utility function Uc(·), the controllers
consider the parameters such as flow-rule replacement counter Cc, the total number

of flow-rule replacement R, and replacement-eligibility factor Ef of the elected flow

f . Additionally, the controllers consider the parameter — change in throughput φf

— by replacing the flow-rule f . The utility function Uc(·) needs to satisfy the following
properties:

1. Flow-rules associated with each controller are treated with fairness and monopoly

does not occur. Therefore, we consider that:

∂Uc(·)
∂Cc

< 0 (8.6)

131

8. Multi-Tenant Flow-Table Partitioning

2. We aim to reduce the number of replacement in the flow-tables. Therefore, we

consider that utility function Uc(·) needs to follows the following constraint:

∂Uc(·)
∂Ef

> 0 (8.7)

3. We aim to increase the overall network throughput for ensuring high bandwidth

utilization. Therefore, we consider that Uc(·) has high utility value if the change

in the throughput is high.

∂Uc(·)
∂Df

> 0 (8.8)

where Df denotes the change in throughput for replacing flow-rule f .

Therefore, we define the utility function Uc(·) as follows:

Uc(·) = EfDf

(
1 − Cc

R

)
(8.9)

where f ∈ Fc. The controllers aim to maximize the payoff value of the utility function

Uc(·) to ensure network sustainability and throughput.

8.3 Proposed Algorithms

If flow-rule space is available in the flow-table, the controller that received the Packet-

In message installs the flow-rule and generates a block, accordingly. However, in case

of no flow-rule space availability, the controllers act cooperatively and decide the flow-

rule to be replaced while ensuring the enhanced performance of the network with high

network sustainability. To achieve the aforementioned goal in BIND, we propose two

algorithms — Flow-Rule Election (FLE) and Flow-Rule Replacement (FRR). In BIND,

once a Packet-In message is received by a controller, each controller executes the FLE

132

8.3. Proposed Algorithms

Algorithm 8.1 FLE: Flow-Rule Election in BIND
INPUTS:

1: Fc
 Set of flow-rules maintained by controller c
2: fn
 New flow-rule for received Packet-In message
3: ηf , tf ,Tf ∀f ∈ Fc

4: ηfn

OUTPUTS:
1: fc ∈ Fc
 Elected flow-rule by controller c
2: Efc
 Replacement eligibility factor of elected flow-rule
PROCEDURE:

1: Ec ← {∅}
2: for Each f ∈ Fc do
3: if ηf < ηfn then
4: Calculate Ef using Equation (8.4)
5: Ec ← Ec

⋃
Ef

6: end if
7: end for
8: if Ec �= {∅} then
9: Select flow-rule fc such that Efc ≥ Ef where f �= fc and f, fc ∈ Fc

10: for Each f ∈ Fc/{fc} do
11: Update Tf using Markov predictor [110]
12: end for
13: return {fc,Efc}
14: else
15: return {NULL, NULL}
16: end if

133

8. Multi-Tenant Flow-Table Partitioning

Algorithm 8.2 FRR: Flow-Rule Replacement in BIND
INPUTS:

1: fc,Efc , ∀c ∈ C
 Outputs from FLE Algorithm
2: Cc, ∀c ∈ C
 Controller-specific flow-rule replacement counter
3: dfc∀c ∈ C
 Throughput of the selected flow-rules
4: fn
 New flow-rule for received Packet-In message
5: dfc
 Throughput of the new flow-rule fn

6: R
 Total number of flow-replacement
OUTPUTS:

1: xfn
 Presence of new flow-rule in the flow-tables
2: f∗
 Flow-rule replaced by flow-rule fn

PROCEDURE:
1: V ← {∅}
2: for Each c ∈ C do
3: if fc �= NULL then
4: Dfc ← dfn − dfc

5: Calculate Uc(·) using Equation (8.9)
6: V ← V

⋃
Uc(·)

7: end if
8: end for
9: if V == {∅} then

10: return {0, NULL}
11: else
12: f∗ ← fc such that Uc(·) ≥ Uc′(·) where c �= c′ and c, c′ ∈ C

13: return {1, f∗}
14: end if

134

8.3. Proposed Algorithms

algorithm (Algorithm 8.1), distributively. Using the FLE algorithm, the controllers

in the multi-tenant SDN elect a subset of flow-rules which are eligible to be replaced.

Initially, using the FLE algorithm, each controller selects a subset of flow-rules based

on flow-priority, i.e., satisfy the constraint in Equation (8.5), (refer to Line 2). Using

Algorithm 8.1, each controller aims to elect at most one flow-rule having maximum

replacement eligibility factor.

The controller that receives the Packet-In message, executes the FRR algorithm (Al-

gorithm 8.2) and decides if the new flow-rule is to be installed or discarded. Additionally,

using the FRR algorithm, the controller decides which flow-rule is to be replaced to in-

stall the new flow-rule. Using the FRR algorithm (Lines 4-5), the controller calculates

the utility function, i.e., the probability of elected flow-rules to be replaced by the new

flow-rule. Accordingly, the controller generates a block and adds it to the blockchain.

Complexity Analysis In BIND, we take advantage of the distributed architecture of

blockchain for designing a scheme for flow-table partitioning in the multi-tenant SDN.

As mentioned earlier, the proposed scheme, BIND, has two components — flow-rule

election and flow-rule replacement. We observe that the time complexity of Lines 2–5

and 10–12 (Algorithm 8.1) is O(|Fc|). Therefore, we get that the time complexity for

the FLE algorithm in BIND O(|Fc|) for controller c. Accordingly, we get that, in BIND,

the time complexity of the FLE algorithm for the overall network is O(max |Fc|). On

the other hand, we observe that the time complexity of Lines 2-8 (Algorithm 8.2) is

O(|C|). Therefore, the time complexity of the FRR algorithm is O(|C|). Hence, the

overall complexity of the proposed scheme, BIND, is O(|C| +max |Fc|).
Moreover, the space complexity of the FLE algorithm in BIND is O(|maxFc|), where

the space complexity for each controller c is O(|Fc|). On the other hand, the space

complexity for the FRR algorithm in BIND is O(|C|). Therefore, similar to the time

complexity, we observe that the space complexity of the proposed scheme, BIND, is

O(|C| +max |Fc|).

135

8. Multi-Tenant Flow-Table Partitioning

8.4 Performance Evaluation

In this section, we analyze the performance of the proposed scheme, BIND, for varying

number of flows in multi-tenant SDN. Generic test-bed information for BIND is provided

in Table 8.1.

Table 8.1: System Specification
Parameter Value
Processor Intel(R) Core(TM) i5-2500

CPU @ 3.30 GHz
RAM 4 GB DDR3
Disk Space 500 GB
Operating System Ubuntu 16.04 LTS

8.4.1 Simulation Parameters

For simulation, we considered the number of SDN switches and the controllers to be

20 and 5, respectively. We varied the number of flows as mentioned in Table 8.2. We

consider that each flow generates data traffic at the rate of 0.2 million packets per second

(mpps).

Table 8.2: Simulation Parameters
Parameter Value
Simulation area 1000 m×1000 m

Number of controllers 5
Number of switches 20
Number of flows 1000, 2000, 3000
Flow priorities 1-5
Data-rate requirement per flow 50-100 kbps
Maximum data-rate per switch 103 kbps

8.4.2 Benchmarks

The performance of the proposed scheme, BIND, is evaluated by comparing with the

two schemes — hard flow-table partitioning (HARD) and soft flow-table partitioning

136

8.4. Performance Evaluation

 0

 0.25

 0.5

 0.75

 1

1000 2000 3000

T
hr

ou
gh

pu
t

(N
or

m
al

iz
ed

)

Number of Flows

 0

 0.25

 0.5

 0.75

 1

1000 2000 3000

Su
st

ai
na

bi
lit

y
(N

or
m

al
iz

ed
)

Number of Flows

 0

 0.25

 0.5

 0.75

 1

1000 2000 3000

D
el

ay

(N
or

m
al

iz
ed

)

Number of Flows

 BIND HARD PROXY

Figure 8.2: Comparison of BIND with Other Schemes

in the presence of proxy controller (PROXY). In HARD, we consider that controllers

have non-overlapping and restricted flow-table access. On the other hand, in PROXY,

we consider that the controllers use soft flow-table partitioning in the presence of proxy

controller.

We evaluated the performance of the proposed scheme, BIND, using the metrics such

as network delay, network throughput and network sustainability, as discussed below:

8.4.3 Performance Metrics

We have evaluated the performance of BIND using the following metrics:

Network Delay: The overall network delay is the composite of thr flow setup

delay and the data traffic delay. However, in BIND, we focus on reducing only the

flow setup delay. Hence, by network delay, we consider the flow setup delay.

Network Throughput: The network throughput signifies that the amount of

data successfully transmitted from the source node to the destination. With effi-

cient rule placement in multi-tenant SD-DCN, network throughput increases sig-

nificantly.

Network Sustainability: As mentioned earlier, the network sustainability is

defined as the ratio of the number active flow with high priority which are not

interrupted by any flow with low priority and the total number of active flows.

137

8. Multi-Tenant Flow-Table Partitioning

8.4.4 Results and discussions

From Figure 8.2(a), we observe that with the increase in the number of flows, the flow

setup delay reduces by 48.1-49.7% using BIND, due to the distributed nature. However,

in HARD and PROXY, the flow setup is a centralized approach. Hence, we observe

that, in HARD and PROXY, the delay increases in polynomial curve, whereas the delay

using BIND increases linearly.

We observe that using BIND, the achieved throughput is higher by 12.5-14.3% as

compared to HARD and PROXY, as shown in Figure 8.2(b). We observed that, in

HARD and PROXY, the flow-rule gets replaced based on the time-stamp only, however

in BIND, we ensure that the flow-rules having high throughput get priority in flow-rule

replacement.

From Figure 8.2(c), we observe that BIND ensures 100% network sustainability,

whereas using HARD and PROXY, the network sustainability decreases with the in-

crease in the number of flows. In BIND, while evaluating the eligibility factor of the

flow-rules, we ensure that the high priority active flows are not replaced by the low

priority flows, which results in high network sustainability.

8.5 Concluding Remarks

In this Chapter, we proposed BIND, a blockchain-based flow-table partitioning scheme,

for distributed multi-tenant SDN. Using blockchain, we ensured that the controllers

are synchronized and cooperative in nature. In BIND, we used utility game to pro-

pose the distributed algorithm for flow-rule election, where each controller distributively

identifies the flow-rules’ replacement eligibility factors, and elects a single flow-rule for

replacement. Thereafter, we considered a utility game-based centralized algorithm for

flow-rule replacement to be performed by the controller receiving the Packet-In message.

We observed that BIND ensures fairness in flow-rule replacement for the controllers in

138

8.5. Concluding Remarks

a distributed multi-tenant SDN. Through simulation, we observed that the flow setup

delay increases linearly using BIND. BIND also ensures high throughput and 100%

network sustainability, thereby outperforming the benchmark schemes – HARD and

PROXY. In particular, we observed that using BIND, the flow setup delay reduces by

48.1-49.7%, while ensuring 12.5-14.3% increase in network throughput than using the

existing schemes.

139

Chapter 9

Conclusion

The objective of this Thesis is to design different data traffic management schemes

suitable for SD-DCN in the presence of heterogeneous elephant and mice flows. We

considered various challenges such as the presence of heterogeneous flows, performance

limitations and corresponding optimal values, limited TCAM space, and limited network

bandwidth. Chapters 3-4 presented the analytical schemes proposed in this Thesis. On

the other hand, Chapters 5-7 focused on designing data traffic management schemes for

SD-DCN in the presence of heterogeneous flows. Further, Chapter 8 discussed flow-table

partitioning for distributed multi-tenant SD-DCN in the presence of heterogeneous IoT

flows.

In this final Chapter, we take a holistic view of our work discussed so far. We discuss

the summary of this Thesis in Section 9.1. We list out the major contributions of the

Thesis in Section 9.2. In Section 9.3, we discuss the limitations of our work. Finally, in

Section 9.4, we conclude the Thesis while citing future directions.

9.1 Summary of the Thesis

This Thesis was presented in nine chapters. Chapter 1 presented a brief introduction to

SD-DCN, and discussed the motivation of the work while citing the main objectives of

141

9. Conclusion

this Thesis.

In Chapter 2, we surveyed the existing literature on theoretical analysis of SDN, and

resource management in SDN and DCN. Finally, we summarized the problem area based

on the limitations of the existing schemes.

Chapter 3 analyzed the performance of packet flow through an OpenFlow switch in

SD-DCNs and proposed an analytical model, named AMOPE, to define the probabilistic

bounds of the performance metrics of the OpenFlow switch. We modeled the packet flow

steps in an OpenFlow switch using Markov chain and calculated the theoretical probabil-

ities of the packet to be in different states. Additionally, we calculated the probabilities

of a packet being at output action state, getting dropped, and getting forwarded to the

controller, theoretically. We also verified the theoretical findings using the MATLAB

simulation platform. Through simulations, we observed that approximately 60% of the

processed packets are sent to output action, 31% of the processed packets are sent to the

controller, and the remaining processed packets are dropped in an OpenFlow switch.

Chapter 4 presented the scheme for analyzing the optimum buffer size of an Open-

Flow switch in order to ensure QoS in OpenFlow systems. We analyzed the optimum

packet arrival and processing rates, and the average waiting time of packets. In OPUS,

we modeled the architecture of an OpenFlow switch as a I-M/M/1/K queue, while

considering that there are I ingress buffers. Each buffer has K memory blocks in an

OpenFlow switch. We analyzed the optimum number of buffers with the optimum value

of memory of each buffer. Additionally, we evaluated the optimum packet arrival and

processing rates of an OpenFlow switch using OPUS. Simulation-based analysis exhib-

ited that with two times increase in packet processing rate, the packet arrival rate can

be increased by 26.15-30.4%. We inferred that for an OpenFlow system, the minimum

buffer size is 0.75 million packets with the maximum packet arrival and the minimum

processing rate of 0.20-0.25 million packets per second (mpps) and 0.30-0.35 mpps, re-

spectively, and the maximum packet waiting time is 0.173-0.249 second.

142

9.1. Summary of the Thesis

In Chapter 5, two dynamic QoS-aware data traffic management schemes for the

heterogeneous IoT applications in SD-DCN are presented considering the presence of

heterogeneous flows. Firstly, we presented a game theory-based dynamic data traffic

management scheme, named TROD, for maximizing network throughput in SD-DCN in

the presence of IoT devices. We used an evolutionary game-theoretic approach to de-

ciding the optimal data traffic volume which needs to be handled by the switches, while

considering that the data generation rate for each IoT device is known a priori. Through

simulations, we observed that TROD outperforms the existing schemes – Mobi-Flow and

CURE, while distributing of data traffic among the available switches and reducing the

volumetric overhead per switch by 23.4-29.7%. Thereafter, we introduced another QoS-

aware stochastic data flow management scheme, named FlowMan, for SD-DCN in the

presence of heterogeneous flows. We used a generalized Nash bargaining game to decide

the Pareto optimal datarate to be allocated to each SDN switch, while considering the

heterogeneous flows within the one-hop network. Further, using a distributed heuristic

method, we decided the switch and flow-rule association for ensuring optimal data flow

management in SD-DCN. Through simulations, we observed that FlowMan outperforms

the existing benchmark schemes — CURE and FlowStat, while ensuring high through-

put and low delay. In particular, FlowMan reduces network delay by 77.8–98.7% and

increases network throughput by 24.6–47.8%, than using the existing schemes.

In Chapter 6, we presented a game-theory-based scheme, named D2B, for data broad-

casting in SD-DCN in the presence of mobile IoT devices. We observed that the band-

width distribution among the devices at the edge-tier of the fat-tree SD-DCN follows a

leader-follower structure. Hence, we used a single-leader-multiple-follower Stackelberg

game for designing the D2B scheme. We observed that D2B ensures the reduction in

network delay in the presence of the mobile IoT devices at the edge-tier of the fat-tree

SD-DCN. Moreover, from simulation, we observe that D2B outperforms the other ex-

isting schemes — LSBT and DCN_INFOCOM. In particular, we observed that using

143

9. Conclusion

D2B, the network throughput increased by 55.32%, while ensuring at least 33% increase

in the average bandwidth allocation per IoT device, and reduction in the overall delay.

In Chapter 7, we explored a single-leader-multiple-follower Stackelberg game for de-

signing a dynamic data multicasting scheme, named D2M, in SD-DCN. In D2M, the

controller takes strategic decision for rule placement among the switches while ensuring

efficient load balancing. On the other hand, the switches are responsible for processing

the data packets. Additionally, we considered that the switches are capable of bisecting

the capacity into multiple resource blocks, where a subset of resource blocks needs to be

allocated for each flow. From the simulation, we observed that D2M outperforms the

other existing schemes — LSBT and BLO. In particular, we observed that using D2M,

the network throughput increased by 6.13-95.32% than using existing schemes, while

ensuring 21.32-99.29% reduction in delay.

In Chapter 8, we proposed BIND, a blockchain-based flow-table partitioning scheme,

for distributed multi-tenant SDN. Using blockchain, we ensured that the controllers

are synchronized and cooperative in nature. In BIND, we used utility game to pro-

pose the distributed algorithm for flow-rule election, where each controller distributively

identifies the flow-rules’ replacement eligibility factors, and elects a single flow-rule for

replacement. Thereafter, we considered a utility game-based centralized algorithm for

flow-rule replacement to be performed by the controller receiving the Packet-In message.

We observed that BIND ensures fairness in flow-rule replacement for the controllers in

a distributed multi-tenant SDN. Through simulation, we observed that the flow setup

delay increases linearly using BIND. BIND also ensures high throughput and 100%

network sustainability, thereby outperforming the benchmark schemes – HARD and

PROXY. In particular, we observed that using BIND, the flow setup delay reduces by

48.1-49.7%, while ensuring 12.5-14.3% increase in network throughput than using the

existing schemes.

144

9.2. Contributions

9.2 Contributions

In this Thesis, traffic management schemes in the presence of heterogeneous flows were

proposed for SD-DCN impeded by various challenges. The proposed schemes were de-

signed to cope with the main issues – performance analysis, delay and throughput-

optimal data traffic management, broadcasting and multicasting, and the presence of

distributed multi-tenants, i.e., distributed multiple controllers. We list the major con-

tributions of this Thesis as follows.

Probabilistic Performance Analysis of OpenFlow Switch in SD-DCN: We

developed a Markovian model to replicate the behavior of an OpenFlow switch based on

OpenFlow switch specification version 1.5.0 [5], when an incoming flow of packets passes

through it. In our model, we considered multiple switches, instead of a single switch per

controller. For each switch, we estimated the necessary performance metrics considering

packet queuing, ingress and egress processing.

Buffer Size Evaluation of OpenFlow Systems in SD-DCN: We evaluated the

optimum buffer size based on different performance metrics such as packet arrival and

processing rates, and packet waiting time, in case of packet flow through an OpenFlow

switch-based system. Initially, a queueing theory-based analytical scheme, named OPUS,

based on the existing OpenFlow protocol [5] is developed. In OPUS, we designed the

OpenFlow system as a I-M/M/1/K queue.

Network-Specific QoS-Aware Dynamic Data TrafficManagement in SD-DCN:

We introduced a game theory-based dynamic data traffic management scheme, named

TROD, for minimizing network delay and maximizing network throughput in SD-DCN

in the presence of IoT devices. We used an evolutionary game-theoretic approach to

deciding the optimal data traffic volume which needs to be handled by the switches,

while considering that the data generation rate for each IoT device is known a priori. In

145

9. Conclusion

TROD, the IoT devices act as the players and choose the set of optimal SDN switches,

i.e., strategies in TROD, for forwarding data with the help of SDN controller.

Flow-Specific QoS-Aware Dynamic Data Traffic Management in SD-DCN:

We designed FlowMan for delay-aware stochastic data flow management for SD-DCN

in the presence of heterogeneous flows. We used a generalized Nash bargaining game to

decide the Pareto optimal data rate to be allocated to each SDN-switch while considering

the heterogeneous flows within the one-hop network. We considered that the switches act

cooperatively to ensure high network throughput and low processing delay. In FlowMan,

the strategy of each switch is to decide the optimal subset of flows to be handled by it.

Broadcast Data Traffic Management in Fat-Tree SD-DCN: We presented a

dynamic bandwidth allocation scheme, named D2B, for data broadcasting in fat-tree

SD-DCN, while considering the source node at the edge-tier to be mobile in nature.

In D2B, we used a single-leader-multiple-follower Stackelberg game. Hence, prior to

deciding the amount of bandwidth to be allocated to each node, each switch makes

the list of connected nodes and the maximum capacity of the nodes. Based on this

information, the control plane of each switch decides the amount of bandwidth to be

allocated to each connected node for ensuring balanced load distribution in the fat-tree

SD-DCN.

Multicast Data Traffic Management in Fat-Tree SD-DCN: We used a single-

leader-multiple-follower Stackelberg game for designing a dynamic data multicasting

scheme, named D2M, in SD-DCN. In D2M, we considered that the controller acts as

the leader and installs the flow-rules in the SDN-switches. Additionally, the controller

decides the source node of the flow for each destination. On the other hand, the SDN-

switches, which act as the followers, decide their respective strategies, non-cooperatively.

The followers help the controller to manage the network properly while deciding the

146

9.3. Limitations

amount of bandwidth to be allocated for each flow and optimize the usage of overall

capacity.

Flow-Table Partitioning in Distributed Multi-Tenant SD-DCN: We intro-

duced a utility game theory-based flow-table partitioning scheme, named BIND, for

maximizing the network sustainability and minimizing the network overhead and delay

in a distributed multi-tenant SDN. To ensure fairness among the multi-tenant controllers,

we used blockchain-based flow-table partitioning. In BIND, we considered that the flow-

tables are virtually owned by each controller.

9.3 Limitations

We made few assumptions while designing the proposed schemes.

• Packet processing at SDN switch can be designed as a Markovian process.

• Every event in packet processing is equally probable.

• Incoming packets follow a Poisson distribution.

• IoT devices are heterogeneous in nature and generate heterogeneous flows.

• Each edge between two nodes, i.e., IoT device or switch, has limited bandwidth.

• Source IoT devices are mobile in nature.

• Full coverage of the network is ensured.

• In multi-tenant SDN, there is no centralized SDN-controller, i.e., proxy controller,

to coordinate.

• In multi-tenant SDN„ the SDN-controllers do not misbehave.

147

9. Conclusion

9.4 Future Scope of Work

The schemes proposed in this Thesis, can be extended while considering the following

aspects.

• Future extension of AMOPE, which is designed for theoretical performance analysis

of SDN system, includes proposing an efficient queuing scheme, so that queuing

delay of packet flow gets reduced significantly. In addition, this work can be

extended to understand how packet drop rate can be reduced while using the

available TCAM memory in an OpenFlow switch.

• Future extension of OPUS, which is designed for buffer size analysis of SDN sys-

tem, includes designing a scheme for improving the queueing model with multiple

OpenFlow switches, and reducing waiting time or queueing delay in an OpenFlow

system, while ensuring proper utilization of TCAM memory. This work also can

be extended to visualize using SDN emulator such as Mininet, while considering

real-time parameters – queuing delay for inter-switch communication and duration

for flow-table update. In addition, this work can be extended to understand how

the queueing model for group table functions in an OpenFlow switch-based system

with proper utilization of TCAM memory.

• Future extension of the problems addressed in TROD and FlowMan, includes de-

signing a data flow management scheme for broadcasting while minimizing the

length of the routing path of the flows. The aforementioned problem can be

mapped to the traveling salesman problem, which is an NP-hard problem. Hence,

obtaining a Pareto optimal solution is challenging. Additionally, this work can be

extended while incorporating the possibility of over-subscription in the presence of

switches with limited flow-table capacity.

• Future extension of D2B, includes an understanding of network bandwidth distri-

148

9.4. Future Scope of Work

bution in the presence of multiple source IoT devices at the edge-tier of fat-tree

DCN. This work also can be extended to understand the optimal bandwidth distri-

bution in the core and backhaul network. Additionally, this work can be extended

to understand how network bandwidth is to be distributed while reducing the

energy consumption of the network.

• Future extension of the problem addressed in D2M includes a study of the net-

work bandwidth distribution in the presence of IoT devices with heterogeneous

data/flows, i.e., elephant and mice flows, at the edge-tier of DCN. Additionally,

this work can be extended to understand the interference among the flows if the

same physical resources are shared among multiple flows. This work also can be

extended to reduce the energy consumption of the network, while distributing the

available bandwidth. Moreover, the last work, BIND, which is designed for multi-

tenant SD-DCN system, can be extended by studying the energy consumption and

flow-table aggregation among the controllers in a distributed multi-tenant SDN.

Additionally, the effect of correlated flows can be explored. Furthermore, this

work can be extended while considering that the controllers are non-cooperative

in nature.

• The problems addressed in this thesis can also be revisited considering the provision

for virtualization of multiple resources in network slicing for 5G-based IoT networks

in the presence of SDN. Additionally, similar to the controller failure, the problems

can be re-visited considering the effects of link failure.

149

Publications

Journals
• A. Mondal and S. Misra, “FlowMan: QoS-Aware Dynamic Data Flow Manage-

ment in Software-Defined Networks", IEEE Journal on Selected Areas in Communi-
cations, vol. 38, no. 7, pp. 1366-1373, July 2020. DOI: 10.1109/JSAC.2020.2999682

• S. Misra, A. Mondal, and S. Khajjayam, “Dynamic Big-Data Broadcast in Fat-
Tree Data Center Networks with Mobile IoT Devices," IEEE Systems Journal, vol.
13, no. 3, pp. 2898–2905, September 2019. DOI: 10.1109/JSYST.2019.2899754

• A. Mondal, S. Misra, and I. Maity, “AMOPE: Performance Analysis of OpenFlow
Systems in Software-Defined Networks," IEEE Systems Journal, vol. 14, no. 1,
pp. 124-131, March 2020. DOI: 10.1109/JSYST.2019.2912843

• A. Mondal, S. Misra and I. Maity, “Buffer Size Evaluation of OpenFlow Systems
in Software-Defined Networks," IEEE Systems Journal, vol. 13, no. 2, pp. 1359–
1366, June 2019. DOI: 10.1109/JSYST.2018.2820745

Conferences
• Ayan Mondal and Sudip Misra, “BIND: Blockchain-Based Flow-Table Parti-

tioning in Distributed Multi-Tenant Software-Defined Networks," in Proceedings
of IEEE International Conference on Computer Communications Workshops (IN-
FOCOM Workshops), Toronto, Canada, July 2020, pp. 1-6. DOI: 10.1109/INFO-
COMWKSHPS50562.2020.9162868

• S. Misra, A. Mondal, and P. Kumar, “D2M: Mobility-Aware Dynamic Data Mul-
ticasting in Software-Defined Data Center Networks," in Proceedings of IEEE Inter-
national Conference on Communications Workshops (ICC Workshops), Shanghai,
China, 2019, pp. 1–6. DOI: 10.1109/ICCW.2019.8756718
(Hot Topic Paper Award)

• A. Mondal, S. Misra and A. Chakraborty, “TROD: Throughput-Optimal Dy-
namic Data Traffic Management in Software-Defined Networks," in Proceedings
of IEEE Global Communications Conference Workshops (GLOBECOM Work-
shops), Abu Dhabi, United Arab Emirates, 2018, pp. 1–6. DOI: 10.1109/GLO-
COMW.2018.8644398

151

References

[1] H. V. Jagadish, J. Gehrke, A. Labrinidis, Y. Papakonstantinou, J. M. Patel, R. Ra-
makrishnan, and C. Shahabi, “Big Data and Its Technical Challenges,” Commu-
nications of the ACM Magazine, vol. 57, no. 7, pp. 86–94, July 2014.

[2] J. Choo and H. Park, “Customizing Computational Methods for Visual Analytics
with Big Data,” IEEE Computer Graphics and Applications, vol. 33, no. 4, pp.
22–28, July 2013.

[3] G. Andrienko, N. Andrienko, and S. Wrobel, “Visual Analytics Tools for Analysis
of Movement Data,” ACM SIGKDD, vol. 9, no. 2, pp. 38–46, Dec. 2007.

[4] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky,
and S. Uhlig, “Software-Defined Networking: A Comprehensive Survey,” Proceed-
ings of the IEEE, vol. 103, no. 1, pp. 14–76, January 2015.

[5] OpenFlow. (2014, December) OpenFlow Switch Specification Ver-
sion 1.5.0. Open Networking Foundation. [Online]. Avail-
able: https://www.opennetworking.org/images/stories/downloads/sdn-resources/
onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf

[6] P. T. Congdon, P. Mohapatra, M. Farrens, and V. Akella, “Simultaneously Reduc-
ing Latency and Power Consumption in OpenFlow Switches,” IEEE/ACM Trans-
actions on Networking, vol. 22, no. 3, pp. 1007–1020, June 2014.

[7] N. P. Katta, J. Rexford, and D. Walker, “Incremental Consistent Updates,” in
Proc. of ACM SIGCOMM Wrkshp. New York, NY, USA: ACM, 2013, pp. 49–54.

[8] C. R. Meiners, A. X. Liu, and E. Torng, “Bit Weaving: A Non-Prefix Approach
to Compressing Packet Classifiers in TCAMs,” IEEE/ACM Transactions on Net-
working, vol. 20, no. 2, pp. 488–500, April 2012.

[9] S. Azodolmolky, R. Nejabati, M. Pazouki, P. Wieder, R. Yahyapour, and D. Sime-
onidou, “An Analytical Model for Software Defined Networking: A Network
Calculus-Based Approach,” in Proceedings of IEEE Global Communications Con-
ference (GLOBECOM), December 2013, pp. 1397–1402.

153

References

[10] M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll, and P. Tran-Gia, “Mod-
eling and Performance Evaluation of an OpenFlow Architecture,” in Proceedings
of the 23rd International Teletraffic Congress. International Teletraffic Congress,
2011, pp. 1–7.

[11] M. Chen, S. Mao, and Y. Liu, “Big Data: A Survey,” Mobile Networks and Appli-
cations, vol. 19, no. 2, pp. 171–209, 2014.

[12] G. M. Muntean, P. Perry, and L. Murphy, “Subjective Assessment of the Quality-
Oriented Adaptive Scheme,” IEEE Transactions on Broadcasting, vol. 51, no. 3,
pp. 276–286, September 2005.

[13] C. J. Wu, C. F. Ku, J. M. Ho, and M. S. Chen, “A Novel Pipeline Approach
for Efficient Big Data Broadcasting,” IEEE Transactions on Knowledge and Data
Engineering, vol. 28, no. 1, pp. 17–28, January 2016.

[14] S. Yu, M. Liu, W. Dou, X. Liu, and S. Zhou, “Networking for Big
Data: A Survey,” IEEE Communications Surveys Tutorials, 2016, DOI:
10.1109/COMST.2016.2610963.

[15] J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, A. R. Curtis, and S. Baner-
jee, “DevoFlow: Cost-effective Flow Management for High Performance Enterprise
Networks,” in Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics
in Networks, New York, NY, USA, 2010, pp. 1–6.

[16] C. Metter, M. Seufert, F. Wamser, T. Zinner, and P. Tran-Gia, “Analytical Model
for SDN Signaling Traffic and Flow Table Occupancy and Its Application for Var-
ious Types of Traffic,” IEEE Transactions on Network and Service Management,
vol. 14, no. 3, pp. 603–615, Sep 2017.

[17] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz,
P. Patel, and S. Sengupta, “VL2: A Scalable and Flexible Data Center Network,”
in Proceedings of ACM SIGCOMM Conference on Data Communication, New
York, NY, USA, 2009, pp. 51–62.

[18] M. Al-Fares, A. Loukissas, and A. Vahdat, “A Scalable, Commodity Data Center
Network Architecture,” in Proceedings of ACM SIGCOMM Conference on Data
Communication, New York, NY, USA, 2008, pp. 63–74.

[19] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and S. Baner-
jee, “DevoFlow: Scaling Flow Management for High-performance Networks,” in
Proceedings of ACM SIGCOMM Conference, New York, NY, USA, 2011, pp. 254–
265.

[20] F. R. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron, “Decentralized Task-
aware Scheduling for Data Center Networks,” in Proc. of ACM SIGCOMM, Aug.
2014, pp. 431–442.

154

References

[21] Z. Guo and Y. Yang, “Multicast Fat-Tree Data Center Networks with Bounded
Link Oversubscription,” in Proceedings of IEEE INFOCOM, April 2013, pp. 350–
354.

[22] B. Ciubotaru, C. H. Muntean, and G. M. Muntean, “Mobile Multi-Source
High Quality Multimedia Delivery Scheme,” IEEE Transactions on Broadcasting,
vol. 63, no. 2, pp. 391–403, June 2017.

[23] A. Blenk, A. Basta, M. Reisslein, and W. Kellerer, “Survey on network virtualiza-
tion hypervisors for software defined networking,” IEEE Communications Surveys
Tutorials, vol. 18, no. 1, pp. 655–685, Firstquarter 2016.

[24] M. Caria, A. Jukan, and M. Hoffmann, “Sdn partitioning: A centralized control
plane for distributed routing protocols,” IEEE Transactions on Network and Ser-
vice Management, vol. 13, no. 3, pp. 381–393, Sep. 2016.

[25] Y. Lin, T. Liu, J. Chen, and Y. Lai, “Soft partitioning flow tables for virtual net-
working in multi-tenant software defined networks,” IEEE Transactions on Net-
work and Service Management, vol. 15, no. 1, pp. 402–415, March 2018.

[26] D. L. Eager and K. C. Sevcik, “Performance Bound Hierarchies for Queueing
Networks,” ACM Transactions on Computer Systems, vol. 1, no. 2, pp. 99–115,
May 1983.

[27] P. Garrido, D. E. Lucani, and R. AgÃĳero, “Markov Chain Model for the Decoding
Probability of Sparse Network Coding,” IEEE Transactions on Communications,
vol. 65, no. 4, pp. 1675–1685, April 2017.

[28] P. D. Bergstrom, M. A. Ingram, A. J. Vernon, J. L. A. Hughes, and P. Tetali, “A
markov chain model for an optical shared-memory packet switch,” IEEE Transac-
tions on Communications, vol. 47, no. 10, pp. 1593–1603, October 1999.

[29] A. Bianco, R. Birke, L. Giraudo, and M. Palacin, “OpenFlow Switching: Data
Plane Performance,” in Proceedings of IEEE International Conference on Com-
munications, May 2010, pp. 1–5.

[30] M. Rich and M. Schwartz, “Buffer Sharing in Computer-Communication Net-
work Nodes,” IEEE Transactions on Communications, vol. 25, no. 9, pp. 958–970,
Sepember 1977.

[31] H. Kekre and C. Saxena, “Finite buffer behavior with poisson arrivals and random
server interruptions,” IEEE Transactions on Communications, vol. 26, no. 4, pp.
470–474, Apr 1978.

[32] G. Luan, “Buffer Stopping Time Analysis in Data Center Networks,” IEEE Comm.
Let., vol. 18, no. 10, pp. 1739–1742, October 2014.

[33] M. Cello, G. Gnecco, M. Marchese, and M. Sanguineti, “A Model of Buffer Occu-
pancy for ICNs,” IEEE Comm. Let., vol. 16, no. 6, pp. 862–865, June 2012.

155

References

[34] B. R. Manoj, R. K. Mallik, and M. R. Bhatnagar, “Buffer-Aided Multi-Hop DF
Cooperative Networks: A State-Clustering Based Approach,” IEEE Trans. on
Comm., vol. 64, no. 12, pp. 4997–5010, December 2016.

[35] A. Asheralieva and Y. Miyanaga, “Dynamic Buffer Status-Based Control for LTE-
A Network With Underlay D2D Communication,” IEEE Transactions on Com-
munications, vol. 64, no. 3, pp. 1342–1355, March 2016.

[36] K. Jagannathan, M. Markakis, E. Modiano, and J. N. Tsitsiklis, “Queue-Length
Asymptotics for Generalized Max-Weight Scheduling in the Presence of Heavy-
Tailed Traffic,” IEEE/ACM Trans. on Net., vol. 20, no. 4, pp. 1096–1111, August
2012.

[37] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker, “Abstractions
for Network Update,” in Proceedings of ACM SIGCOMM Conference on Appli-
cations, Technologies, Architectures, and Protocols for Computer Communication,
New York, NY, USA, 2012, pp. 323–334.

[38] S. Bera, S. Misra, and A. V. Vasilakos, “Software-Defined Networking for Internet
of Things: A Survey,” IEEE Internet of Things Journal, vol. 4, no. 6, pp. 1994–
2008, 2017.

[39] N. Saha, S. Misra, and S. Bera, “QoS-Aware Adaptive Flow-Rule Aggregation in
Software-Defined IoT,” in Proceedings of IEEE Global Communications Conference
(GLOBECOM), 2018, pp. 206–212.

[40] I. Maity, A. Mondal, S. Misra, and C. Mandal, “Tensor-Based Rule-Space Man-
agement System in SDN,” IEEE Systems Journal, vol. 13, no. 4, pp. 3921–3928,
2019.

[41] H. Huang, S. Guo, P. Li, B. Ye, and I. Stojmenovic, “Joint Optimization of Rule
Placement and Traffic Engineering for QoS Provisioning in Software Defined Net-
work,” IEEE Trans. on Comp., vol. 64, no. 12, pp. 3488–3499, Dec 2015.

[42] Y. Sadeh, O. Rottenstreich, A. Barkan, Y. Kanizo, and H. Kaplan, “Optimal
Representations of a Traffic Distribution in Switch Memories,” in Proc. of IEEE
INFOCOM, Apr 2019, pp. 2035–2043.

[43] O. Rottenstreich, Y. Kanizo, H. Kaplan, and J. Rexford, “Accurate Traffic Split-
ting on SDN Switches,” IEEE J. on Sel. Areas in Comm., vol. 36, no. 10, pp.
2190–2201, Oct 2018.

[44] M.-H. Wang, P.-W. Chi, J.-W. Guo, and C.-L. Lei, “SDN storage: A Stream-Based
Storage System over Software-Defined Networks,” in Proc. of IEEE INFOCOM
Wrksps, Apr 2016, pp. 598–599.

[45] F. Li, J. Cao, X. Wang, Y. Sun, T. Pan, and X. Liu, “Adopting SDN Switch
Buffer: Benefits Analysis and Mechanism Design,” in Proc. of IEEE ICDCS, Jun
2017, pp. 2171–2176.

156

References

[46] M. Hayes, B. Ng, A. Pekar, and W. K. G. Seah, “Scalable Architec-
ture for SDN Traffic Classification,” IEEE Syst. J., pp. 1–12, 2017, DOI:
10.1109/JSYST.2017.2690259.

[47] N. Saha, S. Bera, and S. Misra, “Sway: Traffic-Aware QoS Routing in Software-
Defined IoT,” IEEE Transactions on Emerging Topics in Computing, pp. 1–1,
2018.

[48] S. Bera, S. Misra, S. K. Roy, and M. S. Obaidat, “Soft-WSN: Software-Defined
WSN Management System for IoT Applications,” IEEE Syst. J., pp. 1–8, 2016,
DOI:10.1109/JSYST.2016.2615761.

[49] S. Misra, S. Bera, A. M. P., S. K. Pal, and M. S. Obaidat, “Situation-Aware
Protocol Switching in Software-Defined Wireless Sensor Network Systems,” IEEE
Systems Journal, vol. 12, no. 3, pp. 2353–2360, 2018.

[50] S. Bera, S. Misra, and M. S. Obaidat, “Mobility-Aware Flow-Table Implementation
in Software-Defined IoT,” in Proc. of IEEE GLOBECOM, December 2016, pp. 1–6.

[51] S. Bera, S. Misra, and M. S. Obaidat, “Mobi-Flow: Mobility-Aware Adaptive
Flow-Rule Placement in Software-Defined Access Network,” IEEE Transactions
on Mobile Computing, vol. 18, no. 8, pp. 1831–1842, 2019.

[52] S. Agarwal, M. Kodialam, and T. V. Lakshman, “Traffic Engineering in Software
Defined Networks,” in Proc. of IEEE INFOCOM, Apr 2013, pp. 1–9.

[53] S.-H. Tseng, A. Tang, G. L. Choudhury, and S. Tse, “Routing Stability in Hybrid
Software-Defined Networks,” IEEE/ACM Trans. on Net., vol. 27, no. 2, pp. 790–
804, Apr 2019.

[54] S. Misra and S. Bera, “Soft-VAN: Mobility-Aware Task Offloading in Software-
Defined Vehicular Network,” IEEE Transactions on Vehicular Technology, vol. 69,
no. 2, pp. 2071–2078, 2020.

[55] S. Misra and N. Saha, “Detour: Dynamic Task Offloading in Software-Defined
Fog for IoT Applications,” IEEE Journal on Selected Areas in Communications,
vol. 37, no. 5, pp. 1159–1166, 2019.

[56] M. Moradi, Y. Zhang, Z. Morley Mao, and R. Manghirmalani, “Dragon: Scalable,
Flexible, and Efficient Traffic Engineering in Software Defined ISP Networks,”
IEEE J.on Sel. Areas in Comm., vol. 36, no. 12, pp. 2744–2756, Dec 2018.

[57] Z. Allybokus, K. Avrachenkov, J. Leguay, and L. Maggi, “Multi-Path Alpha-Fair
Resource Allocation at Scale in Distributed Software-Defined Networks,” IEEE J.
on Sel. Areas in Comm., vol. 36, no. 12, pp. 2655–2666, Dec 2018.

[58] D. Sanvito, I. Filippini, A. Capone, S. Paris, and J. Leguay, “Adaptive Robust
Traffic Engineering in Software Defined Networks,” in Proc. of IFIP Networking
and Workshops, May 2018, pp. 1–9.

157

References

[59] A. Mondal, S. Misra, and A. Chakraborty, “TROD: Throughput-Optimal Dy-
namic Data Traffic Management in Software-Defined Networks,” in Proc. of IEEE
Globecom Workshops, Dec 2018, pp. 1–6.

[60] H. Tahaei, R. B. Salleh, M. F. A. Razak, K. Ko, and N. B. Anuar, “Cost Effec-
tive Network Flow Measurement for Software Defined Networks: A Distributed
Controller Scenario,” IEEE Access, vol. 6, pp. 5182–5198, 2018.

[61] B. GÃűrkemli, S. Tatlicioglu, A. M. Tekalp, S. Civanlar, and E. Lokman, “Dynamic
Control Plane for SDN at Scale,” IEEE J. on Sel. Areas in Comm., vol. 36, no. 12,
pp. 2688–2701, Dec 2018.

[62] S. Bera, S. Misra, and N. Saha, “DynamiTE: Dynamic Traffic Engineering in
Software-Defined Cyber Physical Systems,” in Proc. of IEEE ICC Workshops,
May 2018, pp. 1–6.

[63] B. Mao, F. Tang, Z. M. Fadlullah, and N. Kato, “An Intelligent Route Computa-
tion Approach Based on Real-Time Deep Learning Strategy for Software Defined
Communication Systems,” IEEE Trans. on Emerg. Topics in Comp., pp. 1–12,
2019.

[64] O. Rottenstreich, I. Keslassy, Y. Revah, and A. Kadosh, “Minimizing Delay in
Network Function Virtualization with Shared Pipelines,” IEEE Trans. on Par.
and Dist. Syst., vol. 28, no. 1, pp. 156–169, Jan 2017.

[65] O. Rottenstreich and J. Tapolcai, “Lossy Compression of Packet Classifiers,” in
Proc. of ACM/IEEE ANCS, May 2015, pp. 39–50.

[66] A. Singh, S. Batra, G. S. S. Aujla, N. Kumar, and L. T. Yang, “Bloom-
Store: Dynamic Bloom Filter-based Secure Rule-Space Management Scheme
in SDN,” IEEE Transactions on Industrial Informatics, pp. 1–11, 2020, DOI:
10.1109/TII.2020.2966708.

[67] G. S. Aujla, R. Chaudhary, N. Kumar, R. Kumar, and J. J. P. C. Rodrigues, “An
Ensembled Scheme for QoS-Aware Traffic Flow Management in Software Defined
Networks,” in Proc. of IEEE Int. Conf. on Comm., May 2018, pp. 1–7.

[68] S. Bera, S. Misra, and N. Saha, “Traffic-aware Dynamic Controller Assign-
ment in SDN,” IEEE Transactions on Communications, pp. 1–8, 2020, DOI:
10.1109/TCOMM.2020.2983168.

[69] Z. Guo and Y. Yang, “On Nonblocking Multicast Fat-Tree Data Center Networks
with Server Redundancy,” IEEE Transactions on Computers, vol. 64, no. 4, pp.
1058–1073, April 2015.

[70] W. Liu, K. Nakauchi, and Y. Shoji, “A Neighbor-Based Probabilistic Broadcast
Protocol for Data Dissemination in Mobile IoT Networks,” IEEE Access, vol. 6,
pp. 12 260–12 268, 2018.

158

References

[71] C. P. Lau, A. Alabbasi, and B. Shihada, “An Efficient Live TV Scheduling System
for 4G LTE Broadcast,” IEEE Syst. J., vol. 11, no. 4, pp. 2737–2748, Dec. 2017.

[72] T. Zarb and C. J. Debono, “Broadcasting Free-Viewpoint Television Over Long-
Term Evolution Networks,” IEEE Syst. J., vol. 10, no. 2, pp. 773–784, Jun. 2016.

[73] H. Lakhlef, A. Bouabdallah, M. Raynal, and J. Bourgeois, “Agent-Based Broadcast
Protocols for Wireless Heterogeneous Node Networks,” Comp. Comm., vol. 115,
pp. 51 – 63, 2018.

[74] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman, “A Survey
of Information-Centric Networking,” IEEE Comm. Mag., vol. 50, no. 7, pp. 26–36,
Jul. 2012.

[75] R. Trestian, O. Ormond, and G. M. Muntean, “Enhanced Power-Friendly Access
Network Selection Strategy for Multimedia Delivery Over Heterogeneous Wireless
Networks,” IEEE Transactions on Broadcasting, vol. 60, no. 1, pp. 85–101, March
2014.

[76] D. Paul, W. D. Zhong, and S. K. Bose, “Demand Response in Data Centers
Through Energy-Efficient Scheduling and Simple Incentivization,” IEEE Syst. J.,
vol. 11, no. 2, pp. 613–624, Jun. 2017.

[77] A. Iyer, P. Kumar, and V. Mann, “Avalanche: Data Center Multicast using Soft-
ware Defined Networking,” in Proceedings of the Sixth International Conference
on Communication Systems and Networks (COMSNETS), 2014, pp. 1–8.

[78] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M. Handley,
“Improving Datacenter Performance and Robustness with Multipath TCP,” in
Proceedings of ACM SIGCOMM Conference, New York, NY, USA, 2011, pp. 266–
277.

[79] R. Zhu, D. Niu, B. Li, and Z. Li, “Optimal multicast in virtualized datacenter
networks with software switches,” in Proceedings of IEEE Conference on Computer
Communications (INFOCOM), 2017, pp. 1–9.

[80] E. Chiu and V. K. N. Lau, “Precoding Design for Multi-Antenna Multicast Broad-
cast Services With Limited Feedback,” IEEE Syst. J., vol. 4, no. 4, pp. 550–560,
Dec. 2010.

[81] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat, “Hedera:
Dynamic Flow Scheduling for Data Center Networks,” in Proc. of USENIX Conf.
on Net. Sys. Des. and Impl., Mar. 2010, pp. 1–15.

[82] A. R. Curtis, S. Keshav, and A. Lopez-Ortiz, “LEGUP: Using Heterogeneity to
Reduce the Cost of Data Center Network Upgrades,” in Proc. of ACM SIGCOMM,
Aug. 2010, pp. 1–12.

159

References

[83] G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed Coordination
Function,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 3, pp.
535–547, March 2000.

[84] A. Markov, “Extension of the Limit Theorems of Probability Theory to a Sum
of Variables Connected in a Chain,” in Dynamic Probabilistic Systems (Volume I:
Markov Models). John Wiley & Sons, Inc., 1971, pp. 552–577.

[85] M. A. Marsan, G. Conte, and G. Balbo, “A Class of Generalized Stochastic Petri
Nets for the Performance Evaluation of Multiprocessor Systems,” ACM Trans. on
Comp. Sys,, vol. 2, no. 2, pp. 93–122, May 1984.

[86] J. Suzuki, “A Markov Chain Analysis on Simple Genetic Algorithms,” IEEE Trans.
on Syst., Man, and Cyb., vol. 25, no. 4, pp. 655–659, April 1995.

[87] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore, “OFLOPS: An
Open Framework for OpenFlow Switch Evaluation,” in Proceedings of Interna-
tional Conference on Passive and Active Network Measurement. Springer, 2012,
pp. 85–95.

[88] L. Kleinrock, Queueing Systems, Volume 1: Theory. Wiley-Interscience, 1975.

[89] N. Sapountzis, T. Spyropoulos, N. Nikaein, and U. Salim, “Optimal Downlink
and Uplink User Association in Backhaul-Limited HetNets,” in Proc. of IEEE
INFOCOM, April 2016, pp. 1–9.

[90] S. Misra and A. Chakraborty, “QoS-Aware Dispersed Dynamic Mapping of Virtual
Sensors in Sensor-Cloud,” IEEE Transactions on Services Computing, pp. 1–12,
May 2019, DOI: 10.1109/TSC.2019.2917447.

[91] H. Park and M. van der Schaar, “Bargaining Strategies for Networked Multimedia
Resource Management,” IEEE Transactions on Signal Processing, vol. 55, no. 7,
pp. 3496–3511, July 2007.

[92] J. D. Ullman, “NP-Complete Scheduling Problems,” J. of Com. & Syst. Sc.,
vol. 10, no. 3, pp. 384–393, 1975.

[93] I. Maity, A. Mondal, S. Misra, and C. Mandal, “CURE: Consistent Update with
Redundancy Reduction in SDN,” IEEE Trans. on Comm., vol. PP, no. 99, pp.
1–8, 2018.

[94] Federal Communications Commission (FCC). (2019, Aug.) Broad-
band Speed Guide. [Online]. Available: https://www.fcc.gov/reports-
research/guides/broadband-speed-guide

[95] R. Trestian, K. Katrinis, and G. Muntean, “OFLoad: An OpenFlow-Based Dy-
namic Load Balancing Strategy for Datacenter Networks,” IEEE Trans. on Net.
Serv. Man., vol. 14, no. 4, pp. 792–803, Dec 2017.

160

References

[96] A. Mondal, S. Misra, and I. Maity, “Buffer Size Evaluation of OpenFlow Systems
in Software-Defined Networks,” IEEE Syst. J., pp. 1–8, 2018.

[97] A. Drexl, “A Simulated Annealing Approach to the Multiconstraint Zero-One
Knapsack Problem,” Computing, vol. 40, no. 1, pp. 1–8, Mar 1988.

[98] R. V. Driessche and D. Roose, “An Improved Spectral Bisection Algorithm and
Its Application to Dynamic Load Balancing,” Parallel Computing, vol. 21, no. 1,
pp. 29 – 48, 1995.

[99] V. Poirriez, N. Yanev, and R. Andonov, “A Hybrid Algorithm for the Unbounded
Knapsack Problem,” Discrete Optimization, vol. 6, no. 1, pp. 110 – 124, 2009.

[100] S. Bera, S. Misra, and A. Jamalipour, “FlowStat: Adaptive Flow-Rule Placement
for Per-Flow Statistics in SDN,” IEEE J. on Sel. Areas in Comm., vol. 37, no. 3,
pp. 530–539, March 2019.

[101] R. W. D. Nickalls, “A New Approach to Solving the Cubic: Cardan’s Solution
Revealed,” The Math. Gaz., vol. 77, no. 480, pp. 354–359, 1993.

[102] NB-IoT – Enabling New Business Opportunities. HUAWEI. [Accessed on: May
10, 2018]. [Online]. Available: http://www.huawei.com/minisite/iot/img/nb_
iot_whitepaper_en.pdf

[103] S. Saroiu, P. K. Gummadi, and S. D. Gribble, “Measurement Study of Peer-to-
Peer File Sharing Systems,” in Proccedings of International Society for Optics
and Photonics - Multimedia Computing and Networking, vol. 4673. International
Society for Optics and Photonics, 2002, pp. 156–170.

[104] B. Liang and Z. J. Haas, “Predictive distance-based mobility management for PCS
networks,” in Proc. of IEEE INFOCOM, vol. 3, Mar. 1999, pp. 1377–1384.

[105] D. B. Johnson and D. A. Maltz, Dynamic Source Routing in Ad Hoc Wireless
Networks, 1996, pp. 153–181.

[106] R. W. Rosenthal, “Games of perfect information, predatory pricing and the chain-
store paradox,” Journal of Economic Theory, vol. 25, no. 1, pp. 92–100, Aug.
1981.

[107] K. Christidis and M. Devetsikiotis, “Blockchains and Smart Contracts for the
Internet of Things,” IEEE Access, vol. 4, pp. 2292–2303, 2016.

[108] A. Chakraborty, A. Mondal, and S. Misra, “Cache-Enabled Sensor-Cloud: The
Economic Facet,” in Proceedings of IEEE Wireless Communications and Network-
ing Conference (WCNC), Apr 2018, pp. 1–6.

[109] A. Chakraborty, S. Misra, A. Mondal, and M. S. Obaidat, “SensOrch: QoS-Aware
Resource Orchestration for Provisioning Sensors-as-a-Service,” in Proceedings of
IEEE Conference on Communications (ICC), 2020, pp. 1–6.

161

References

[110] D. Joseph and D. Grunwald, “Prefetching using Markov Predictors,” IEEE Trans-
actions on Computers, vol. 48, no. 2, pp. 121–133, Feb 1999.

162

BIO-DATA

1. Bio-data:

• Name: Mr. Ayan Mondal
• Roll No.: 14IT92P07
• Father’s Name: Mr. Bhajahari Mondal
• Mother’s Name: Mrs. Sandhya Mondal
• Date of Birth: 12th January, 1991
• Permanent Address: Ashrampara (Teachers’ Colony), Basirhat

P.O. - Basirhat, Dist. - North 24 Parganas
State - West Bengal, India, PIN - 743411

• � ayanmondal@iitkgp.ac.in; mondalayan12@gmail.com

2. Present Status: PhD Research Scholar, TCS Fellow (India)
Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur, India

3. Academic Qualification:

• Master of Science (by Research) 2015
School of Information Technology
Indian Institute of Technology Kharagpur
Thesis: Distributed Energy Management in Smart Grid
Supervisor: Professor Sudip Misra
Grade (out of 10): 9.73

• Bachelor of Technology 2012
Electronics and Communication Engineering
West Bengal University of Technology
Grade (out of 10): 8.99

• Higher Secondary (Science) 2008
West Bengal Council of Higher Secondary Education
Percentage: 84.57

• Secondary 2006
West Bengal Board of Secondary Education
Percentage: 92.00

4. Research Experience:

• TCS Research Fellow, IIT Kharagpur Mar. 2016 – Jan. 2020
Sponsored by DRDO

• Visiting Researcher, Inria, CNRS, IRISA Jun. 2019 – Sep. 2019
Sponsored by Inria, Rennes, France

• Senior Research Fellow, IIT Kharagpur Feb. 2016
Sponsored by DRDO, Govt. of India

• Senior Project Officer, IIT Kharagpur Aug. 2014 – Jan. 2016
Sponsored by DietY, Govt. of India

• Junior Project Officer, IIT Kharagpur Aug. 2013 – Jul. 2014
Sponsored by DietY, Govt. of India

• Junior Project Assistant, IIT Kharagpur Aug. 2012 – Jul. 2013
Sponsored by DietY, Govt. of India

5. Teaching Assistance:

• Software Engineering Lab (CS29006) Jan. 2020 - Jul. 2020
Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur

• Software Engineering Theory (CS20006) Jan. 2020 - Jul. 2020
Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur

• Software Engineering Lab (CS29006) Jan. 2019 - Jun. 2019
Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur

• Software Engineering Theory (CS20006) Jan. 2019 - Jul. 2019
Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur

• Programming and Data Structures Lab (CS19001) Jul. 2018 - Dec. 2018
Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur

• Software Engineering Lab (CS29006) Jan. 2018 - Jun. 2018
Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur

• Wireless Ad-Hoc and Sensor Networks (IT60119) Jul. 2017 - Dec. 2017
Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur

• Programming and Data Structures Lab (CS19001) Jan. 2017 - Jun. 2017
Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur

• Wireless Ad-Hoc and Sensor Networks (IT60119) Jul. 2016 - Dec. 2016
Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur

• Internet and Web-based Technologies (IT60102) Jan. 2016 – May 2016
Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur

• Underwater Sensor Networks: Theory and Simulations Apr. 2016
Short-term Course
NPOL, DRDO
Sponsored by: DRDO

6. Publications:
Journals

[J19] S. Misra, A. Mondal, P. V. Sudheer Kumar, and Sankar K. Pal, “SEED:
QoS-Aware Sustainable Energy Distribution in Smart Grid," IEEE Trans-
actions on Sustainable Computing, pp.1-11, October 2020. [Manuscript ID:
TSUSC-2020-04-0031.R1] (Accepted)

[J18] A. Chakraborty, S. Misra, andA. Mondal, “QoS-Aware Dynamic Cost Man-
agement Scheme for Sensors-as-a-Service," IEEE Transactions on Services
Computing, Early Access, pp. 1-12, July 2020. DOI: 10.1109/TSC.2020.3011495

[J17] S. Misra,A. Mondal, P. Bhavathankar, and M.-S. Alouini, “M-JAW: Mobility-
Based Jamming Avoidance in Wireless Sensor Networks," IEEE Transactions
on Vehicular Technology, vol. 69, no. 5, pp. 5381-5390, May 2020. DOI:
10.1109/TVT.2020.2982966

[J16] A. Mondal and S. Misra, “FlowMan: QoS-Aware Dynamic Data Flow Man-
agement in Software-Defined Networks," IEEE Journal on Selected Areas
in Communications, vol. 38, no. 7, pp. 1366-1373, July 2020. DOI:
10.1109/JSAC.2020.2999682

[J15] A. Roy, A. Mondal, S. Misra, and M. S. Obaidat, “ORCID: Opportunistic
Re-Connectivity for Network Management in the Presence of Dumb Nodes in
Wireless Sensor Networks," IEEE Systems Journal, vol. 14, no. 1, pp. 9-16,
March 2020. DOI: 10.1109/JSYST.2019.2956324

[J14] A. Mondal, S. Misra, and I. Maity, “AMOPE: Performance Analysis of
OpenFlow Systems in Software-Defined Networks," IEEE Systems Journal,
vol. 14, no. 1, pp. 124-131, March 2020. DOI: 10.1109/JSYST.2019.2912843

[J13] S. Misra, A. Mondal, and S. Khajjayam, “Dynamic Big-Data Broadcast
in Fat-Tree Data Center Networks with Mobile IoT Devices," IEEE Systems
Journal, vol. 13, no. 3, pp. 2898-2905, September 2019.
DOI: 10.1109/JSYST.2019.2899754

[J12] I. Maity, A. Mondal, S. Misra, and C. Mandal, “Tensor-Based Rule-Space
Management System in SDN," IEEE Systems Journal, vol. 13, no. 4, pp.
3921-3928, December 2019. DOI: 10.1109/JSYST.2018.2879321

[J11] A. Chakraborty, A. Mondal, A. Roy, and S. Misra, “Dynamic Trust Enforc-
ing Pricing Scheme for Sensors-as-a-Service in Sensor-Cloud Infrastructure,"
IEEE Transactions on Services Computing, pp. 1-12, September 2018. DOI:
10.1109/TSC.2018.2873763

[J10] I. Maity, A. Mondal, S. Misra, and C. Mandal, “CURE: Consistent Update
with Redundancy Reduction in SDN," IEEE Transactions on Communica-
tions, vol. 66, no. 9, pp. 3974-3981, September 2018.

[J9] A. Mondal, S. Misra, and I. Maity, “Buffer Size Evaluation of OpenFlow
Systems in Software-Defined Networks," IEEE Systems Journal, vol. 13, no.
2, pp. 1359-1366, June 2019. DOI: 10.1109/JSYST.2018.2820745.

[J8] A. Mondal, S. Misra, L. S. Patel, S. K. Pal and M. S. Obaidat, “DEMANDS:
Distributed Energy Management Using Non-cooperative Scheduling in Smart
Grid," IEEE Systems Journal, Vol. 12, no. 3, pp. 2645-2653, September
2018. DOI: 10.1109/JSYST.2017.2723961.

[J7] P. Bhavathankar, A. Mondal, and S. Misra, “Topology Control in the Pres-
ence of Jammers for Wireless Sensor Networks," International Journal of
Communication Systems, Vol. 30, no. 13, pp. 1-11, January 2017.
DOI: 10.1002/dac.3289

[J6] A. Roy, S. Misra, P. Kar, and A. Mondal, “Topology Control for Self-
Adaptation in Wireless Sensor Networks with Temporary Connection Im-
pairment," ACM Transactions on Autonomous and Adaptive Systems, Vol.
11, no. 4, pp. 21:1-21:34, January 2017. DOI: 10.1145/2979680

[J5] A. Mondal, S. Misra, and Mohammad S. Obaidat, “Distributed Home En-
ergy Management System with Storage in Smart Grid Using Game Theory,"
IEEE Systems Journal, vol. 11, no. 3, pp. 1857-1866, September 2017.
DOI: 10.1109/JSYST.2015.2421941

[J4] A. Mondal and S. Misra, “Game-Theoretic Energy Trading Network Topol-
ogy Control for Electric Vehicles in Mobile Smart Grid," IET Networks, vol.
4, no. 4, pp. 220-228, July 2015. DOI: 10.1049/iet-net.2014.0089

[J3] S. Misra, T. Ojha, and A. Mondal, “Game-theoretic Topology Control for
Opportunistic Localization in Sparse Underwater Sensor Networks," IEEE
Transactions on Mobile Computing, vol. 14, no. 5, pp. 990-1003, July 2014.

[J2] S. Misra, G. Mali, and A. Mondal, “Distributed Topology Management for
Wireless Multimedia Sensor Networks: Exploiting Connectivity and Cooper-
ation," International Journal of Communication Systems, vol. 27, no. 3, pp.
1367-1387, March 2014. DOI: 10.1002/dac.2770

[J1] S. Misra, S. Bera, A. Mondal, R. Tirkey, H.-C. Chao, S. Chattopadhyay,
“Optimal Gateway Selection in Sensor-Cloud Framework for Health Monitor-
ing," IET Wireless Sensor Systems, vol. 3, no. 4, pp. 61-68, December 2013.
DOI: 10.1049/iet-wss.2013.0073

Conferences

[C14] A. Mondal and S. Misra, “BIND: Blockchain-Based Flow-Table Partition-
ing in Distributed Multi-Tenant Software-Defined Networks," in Proceedings
of IEEE International Conference on Computer Communications Workshops
(INFOCOM Workshops): Blockchain for Secure Software defined Networking
in Smart Communities (BlockSecSDN), Toronto, Canada, July 2020, pp. 1-6.
(Accepted)

[C13] A. Chakraborty, S. Misra, A. Mondal, and Mohammad S. Obaidat, “Sen-
sOrch: QoS-Aware Resource Orchestration for Provisioning Sensors-as-a-Service,"
in Proceedings of IEEE International Conference on Communications (ICC),
Dublin, Ireland, June 2020, pp. 1-6. (Accepted)

[C12] S. Misra, A. Mondal, and P. Kumar, “D2M: Mobility-Aware Dynamic Data
Multicasting in Software-Defined Data Center Networks," in Proceedings of
IEEE International Conference on Communications Workshops (ICC Work-
shops): Secure and Dependable Software Defined Networking for Sustainable
Smart Communities (SecSDN), Shanghai, China, March 2019, pp. 1-6.
DOI: 10.1109/ICCW.2019.8756718 (Hot Topic Paper Award)

[C11] S. Misra, A. Mondal, and A. Mondal, “DATUM: Dynamic Topology Con-
trol for Underwater Wireless Multimedia Sensor Networks," in Proceedings of
IEEE Wireless Communications and Networking Conference (WCNC), Mar-
rakech, Morocco, December 2019, pp. 1-6. DOI: 10.1109/WCNC.2019.8885632

[C10] A. Mondal, S. Misra, and A. Chakraborty, “TROD: Throughput-Optimal
Dynamic Data Traffic Management in Software-Defined Networks," in Pro-
ceedings of IEEE Global Cummunications Conference Workshops (GLOBE-
COMWorkshops): Software defined Networking for 5G Architecture in Smart
Communities, Abu Dhabi, UAE, December 2018, pp. 1-6.
DOI: 10.1109/GLOCOMW.2018.8644398

[C9] A. Mondal and S. Misra, “Dynamic Micro-Grid Selection by Plug-In Electric
Vehicles in Smart Grid: An Evolutionary Game," in IEEE Wireless Commu-
nications and Networking Conference (WCNC), Barcelona, Catalonia, Spain,
April 2018, pp. 1-2. [Student Poster]

[C8] A. Chakraborty, A. Mondal, and S. Misra, “Cache-Enabled Sensor-Cloud:
The Economic Facet," in Proceedings of IEEE Wireless Communications and
Networking Conference (WCNC), Barcelona, Catalonia, Spain, April 2018,
pp. 1-6. DOI: 10.1109/WCNC.2018.8377069

[C7] A. Mondal and S. Misra, “DCoE: Game-Theoretic Dynamic Coalition Ex-
tension with Micro-Grid Failure in Smart Grid," in Proceedings of IEEE Inter-
national Conference on Advanced Networks and Telecommunications Systems
(ANTS), Bhubaneswar, India, December 2017, pp. 1-6.
DOI: 10.1109/ANTS.2017.8384118

[C6] A. Mondal and S. Misra, “Game-theoretic Green Electric Vehicle Energy
Networks Management in Smart Grid," in Proceedings of IEEE International
Conference on Advanced Networks and Telecommunications Systems (ANTS),
Kolkata, India, December 2015, pp. 1-6. DOI: 10.1109/ANTS.2015.7413616

[C5] A. Mondal and S. Misra, “Dynamic Data Aggregator Unit Selection in Smart
Grid: An Evolutionary Game Theoretic Approach," in Proceedings of the 11th
IEEE India Conference on Emerging Trends and Innovation in Technology
(INDICON), Pune, India, December 2014, pp. 1-6.
DOI: 10.1109/INDICON.2014.7030614

[C4] A. Mondal and S. Misra, “Game-Theoretic Distributed Virtual Energy Cloud
Topology Control for Mobile Smart Grid," in Proceedings of the 6th IEEE In-
ternational Conference on Cloud Computing Technology and Science (Cloud-
Com), Singapore, December 2014, pp. 54-61. DOI: 10.1109/CloudCom.2014.83

[C3] A. Roy, A. Mondal, and S. Misra, “Connectivity Re-establishment in the
Presence of Dumb Nodes in Sensor-Cloud Infrastructure: A Game Theoretic
Approach," in Proceedings of Emerging Issues in Cloud (EIC) workshop in
conjunction with the 6th IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), Singapore, December 2014, pp. 847-
852. DOI: 10.1109/CloudCom.2014.121

[C2] S. Misra, A. Mondal, S. Banik, M. Khatua, S. Bera, and Mohammad S.
Obaidat, “Residential Energy Management in Smart Grid: A Markov De-
cision Process-Based Approach," in Proceedings of IEEE International Con-
ference on Internet of Things (iThings), Beijing, China, August 2013, pp.
1152-1157. DOI: 10.1109/GreenCom-iThings-CPSCom.2013.200

[C1] A. Mondal and S. Misra, “Dynamic Coalition Formation in a Smart Grid: A
Game Theoretic Approach," in Proceedings of IEEE International Conference
on Communications Workshops (ICC Workshops): Smart Communication
Protocols and Algorithms (SCPA), Budapest, Hungary, June 2013, pp. 1067-
1071. DOI: 10.1109/ICCW.2013.6649395

7. Patent:

[P1] A. Mondal, S. K. Roy, A. Roy, and S. Misra, “A Cloud Based Automatized
System for On Demand and Without Service Delay Supply of Energy to End
Users," Indian Patent Filed, File No. 201631007632, Date March 4, 2016.

8. Referee Services:

• IEEE Journal on Journal on Selected Areas in Communications (JSAC)
• IEEE Transactions on Network and Service Management (TNSM)
• IEEE Transactions on Communications (TCOM)
• IEEE Transactions on Vehicular Technology (TVT)

• IEEE Transactions on Mobile Computing (TMC)
• IEEE Transactions on Smart Grid (TSG)
• IEEE Transactions on Sustainable Energy (TSTE)
• IEEE Transactions on Sustainable Computing (TSUSC)
• IEEE Systems Journal
• IEEE Access
• IEEE IoT Journal
• IEEE Communications Magazine
• Pervasive and Mobile Computing Journal (PMC) (Elsevier)
• IET Networks
• IET Generation
• IET Wireless Sensor Systems
• Transmission & Distribution
• International Journal of Communication Systems (Wiley)
• Wireless Communications and Mobile Computing (WCMC) (Wiley)
• International Journal of Communication Networks and Distributed Systems

(Springer)
• IEEE International Conference on Communications (ICC) 2019, 2020
• IEEE International Conference on Advanced Networks and Telecommunica-

tion Systems (ANTS) 2016
• IEEE Students’ Technology Symposium (TechSym) 2016
• IEEE TechSym 2014

9. Awards:

• Received the HoT Topic Paper Award in the 2nd Secure and Dependable
Software Defined Networking for Sustainable Smart Communities (SecSDN)
in conjunction with IEEE International Conference on Communications (ICC)
2019 for the paper entitled “D2M: Mobility-Aware Dynamic Data Multicast-
ing in Software-Defined Data Center Networks".

• Received the Tata Consultancy Services (TCS) Research Fellowship
(2015-2019).

• Received the Institute (Indian Institute of Technology Kharagpur) Full Fi-
nancial Grant for the 6th IEEE International Conference on Cloud Com-
puting Technology and Science (CloudCom), Singapore, December 2014.

• Received the Institute (Indian Institute of Technology Kharagpur) Full Fi-
nancial Grant for the 11th IEEE India Conference on Emerging Trends and
Innovation in Technology (INDICON), Pune, India, December 2014.

• Won the Best Poster Presentation Award on the 6th Research Scholars’ Day
2015 of School of Information Technology, Indian Institute of Technology
Kharagpur.

• Received the Merit scholarship by Government of India Ministry of Hu-
man Resource Development Department of Higher Education based on per-
formance in Higher Secondary Examination.

• Received the Merit scholarship by Government of India Ministry of Hu-
man Resource Development Department of Higher Education for exemplary
performance in Secondary Examination.

10. Achievements:

• Served as Departmental Research Scholar Representative of School of Infor-
mation Technology, Indian Institute of Technology Kharagpur for academic
year 2015-2016.

• Served as Organizing team member of AICTE/QIP Sponsored Short-
term course on “Internet of Things: Convergence of Sensing, Cloud and Big-
Data Networking" at Indian Institute of Technology Kharagpur, July 2015.

• Served asOrganizing team member of International Summer and Winter
Term (ISWT) course on “Enabling Internet of Things with Cloud and Big
Data Networking" at Indian Institute of Technology Kharagpur, June 2015.

• Served as Departmental Research Scholar Representative of School of Infor-
mation Technology, Indian Institute of Technology Kharagpur for academic
year 2014-2015.

• Elected Student Senate Member (SSM) and Vice-President (VP) of Vikram
Sarabhai Residential Complex, Indian Institute of Technology Kharagpur,
Kharagpur, West Bengal, India for academic year 2014-2015.

• Ranked 3rd and 49th in Secondary Examination from District - North 24
Parganas, West Bengal, India and State - West Bengal, India, respectively.

11. Professional Affiliations

• Student member, ACM
• Student member, IEEE
• Student member, IEEE Young Professionals
• Student member, IEEE Communications Society
• Student member, IEEE Computer Society
• Student member, IEEE Information Theory Society

	1-4
	5
	6
	7
	8-204

