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Abstract—In this paper, we propose and design AuGrid, an
LSTM-based model for geographically aware smart grid service
providers, which predicts the hourly load requests from users. We
also develop a pricing model which depends on the predictions
obtained from AuGrid for deciding per unit cost of energy in
contrast to the existing schemes that focused solely on the load
requests. The crux of this work is that the suppliers may plan
better with forecasts than being in uncertainty. Since smart
grids are well connected, logically neighboring smart grids may
exchange information and energy on the requirement. We train
AuGrid with a lookback set to 2 using real-world datasets and
demonstrate its robustness by predicting the load requests for
different suppliers. We propose deploying the AuGrid system
on geographically aware suppliers for facilitating intelligence on
the edge while reducing the user sample space and increasing
data security. On extensive implementation and deployment, we
observe that AuGrid offers minuscule loss (below 0.1) and the
pricing model offers a reduction in per-unit cost by almost
75% in comparison to existing solutions. Additionally, AuGrid
requires 30% CPU and 40% RAM of single processor boards
on deployment, which illustrates its suitability for resource-
constrained devices.

Index Terms—LSTM, edge intelligence, smart grid, machine
learning, Internet of Things.

I. INTRODUCTION

Smart grids are green infrastructures for the suppliers
to strategically serve electricity/energy/power requests from
users/consumers with promising results. However, the load
requests and their patterns over the years have observable
changes due to the COVID-19 pandemic [1], which necessi-
tates the need for novel solutions for flattening the generation-
consumption curve. Profiling consumers is a common practice
in smart grids for efficient management, which requires the
processing of sizeable data. Edge processing-based network
architectures may be a suitable solution. However, the use
of smart meter data for profiling users like the number of
consumers in the household, electrical appliances, and usage
patterns is concerning due to potential privacy and security
threats. Such issues may be overcome by making the profiling
at the geographically aware suppliers/marketplaces based on
load requests from its customers as a community, instead
of making it user/household-specific. The per-unit cost of
energy, which particularly depends on load requests, is also
a concerning factor.
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Figure 1: Overview of the proposed AuGrid system.

In this work, we propose AuGrid as a method for forecasting
the load requests from the consumers on an hourly basis
every month at the supplier end. The Au in AuGrid represents
Augury (or forecast) and Grid represents smart grids. As
shown in Fig. 1, we consider geographically aware suppliers
offering their services to a set of users. These users are a
part of an IoT-enabled environment and equipped with smart
meters. We develop a model for enabling a supplier to predict
the local aggregated hourly load requests from these users.
We achieve this by using a long short-term memory (LSTM)-
based recurrent neural network (RNN) for predicting the load
requests. The LSTM helps in making the predictions by con-
sidering the previous load requests as the energy consumption
increments or decrements in proportion to the previous load.
We also develop a dynamic pricing scheme to regulate and
manage the energy supply by considering how far off the
predictions are from the actual requests. In summary, AuGrid
enables suppliers to forecast the load requests and set the per-
unit cost according to the predictions, in contrast to depending
solely on load requests and energy generation [2].

A. Motivation

Energy conservation and the use of renewable sources are
the need of the hour. Towards this, existing literature offers
multiple solutions for profiling consumers for serving their
load requests. Moreover, some of the solutions also focus on
studying the consumption by single appliances such as air
conditioners, refrigerators, and other similar devices. These
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methods raise privacy concerns, which mandates the need for
secured and reliable solutions. Also, pricing models that solely
depend on load requests and energy generation do not help
in making informed decisions due to the uncertainty of the
future. Such challenges motivate us in developing the proposed
AuGrid system of predicting the community load profiles from
the supplier’s perspective based on the previous requests and
setting the per-unit cost accordingly. It does not need user
profiling on an individual level. Adaptive pricing models help
in regulating the consumption by users.

B. Contribution

We develop AuGrid as a system for smart grid service
providers for forecasting load requests and setting the per-
unit costs without raising privacy concerns. The specific set
of contributions are:

• Load Profile: We profile the load requests as a commu-
nity rather than as an individual. This method requires the
total request data at the suppliers rather than individual
smart meters.

• Hourly Predictions: We develop an LSTM-based model
for making hourly predictions, which helps the suppliers
in making cost, generation, and conservation decisions.

• Adaptive Pricing Model: We develop a pricing model for
setting the cost per unit energy based on the predictions
from AuGrid and the actual load request.

• Edge Intelligence: We develop AuGrid as a system for
geographically aware service providers. They make the
predictions according to the set of their customers, which
reduces the sample space and also increases data privacy.

• Evaluation: Through extensive experiments on a real
dataset, we demonstrate the efficiency of Augrid in com-
parison to existing solutions.

It may be noted that we focus on predicting the load requests
and their corresponding price in this work and refrain from
modeling the communications among the smart meters or the
edge. However, green methods such as in [3] are promising
solutions for reducing consumption due to communications.

We organize the rest of the paper as follows. We present
some of the relevant existing literature in Section II. We then
present a background on LSTM in Section III and elaborate
on the dataset (used in this work) in Section IV. We then
illustrate the AuGrid system in Section V and present the
network architecture along with the proposed pricing model
in Section VI. We then present our observations in Section
VII and finally conclude in Section VIII.

II. RELATED WORK

A. Smart Grid and Applications

Forecasting power consumption in smart grids is beneficial
for both customers and service providers. The authors in [4]
focused on air conditions and proposed an ARIMA-based
model to predict the energy consumption for the next day.

However, methods on the overall electricity consumption help
in making better decisions over those from the selective ones.
Alazab et al. [5] accounted for the electricity production,
consumption, and price elasticity to predict the stability of
a smart grid system. They used a multi-dimensional LSTM
to achieve this. The authors in [6] profiled the energy usage
according to the user profiles and proposed an auction-based
mechanism for optimizing the energy trade between the user
and supplier. They relied on the Anderson model for profiling
the consumers. In contrast to provisioning and consuming
energy, the authors in [7] proposed a Lyapunov optimization
framework for virtualized energy storage. The consumers are
oblivious to the pooled infrastructure and other proceedings.
However, although stated as an advantage by the authors, their
work only considers the current system state and does not
predict the outcomes of the future. In our opinion, some sight
into the future helps in making better decisions, especially
when dealing with renewable sources. Other possible energy
harvesting schemes in smart grid-powered wireless networks
may be found in the work by Hu et al. [8].

B. Energy Management in Smart Grids

Forecasting energy requirements leads to better energy man-
agement in smart grids. Latifi et al. [9] highlighted the need
for flattening the curve between generation and consumption
rates. The authors in [10] proposed a data mining method
for profiling the energy consumption in households from the
data in smart meters. Liang et al. [11] also took a similar
data-driven consumer-centric approach. While such methods
prove beneficial, it also raises data privacy concerns and
the consumers might not be willing to share the necessary
details. Hassan et al. [12] on the other hand, proposed a
Markov chain-based method, which considers the energy usage
scheme, randomness of energy requests, and the current state
for making management decisions. They considered a cellular
network setup, which interacts with renewable source powered
smart grids, and they communicate with one another for
reacting to the dynamic usage policies. Further, the authors
in [13] designed a smart grid-based simulator for studying,
developing, and testing energy management schemes.

C. Security in Smart Grids

The studies of forecasting the loads are also important to
identify attacks in smart grids. One of the common attacks is
load redistribution, where the attackers inject load across dif-
ferent buses, without exceeding the total production. Kavyani
and Hedman [14] proposed a fast greedy algorithm to detect
such attacks. Islanding is another challenge where the energy-
supplying devices keep dissipating even when the consuming
device is inactive. Kumar and Bhowmik [15] designed a
hidden Markov model-based method for detecting such attacks
with minimum latency. Due to automation and network adop-
tions, smart grids are open to cyber attacks [16]. Some services
are also outsourced to third parties for operational simplicity,
which raises privacy concerns. Xue et al. [17] identified such
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Figure 2: Power generation from renewable sources.

issues and developed a privacy-preserving scheme for secured
outsourcing and dynamic pricing predictions.

D. Pricing Models in Smart Grids

Yang et al. [18] proposed a classification model for identifying
the category of users based on their consumption profile and
device ownership before determining the price according to the
load request. While such methods are promising and efficient,
they open the scope for security threats and privacy breaches.
The authors in [19] highlighted such threats (hidden electric-
ity thefts) and also pointed out the vulnerabilities in smart
grids. On the other hand, Almahmoud et al. [20] proposed
a threshold-based policy for determining the price of energy.
To overcome the management challenges of smart grids, Wei
et al. [21] proposed using an intermediate entity between the
suppliers and consumers for easy energy trading.

E. Synthesis

We observed that researchers have been developing methods
for flattening the generation-consumption curve. These works
focus on forecasting the load requests (monthly) for enabling
the service providers to be well prepared. Additionally, some
authors have presented methods for profiling the customers
and their energy usage, along with the equipment they use.
This allows strategic energy harvesting (both centralized and
decentralized). Further, we observed different versions of
pricing models consisting of varying parameters, which help
in optimizing the customer and service provider incentives, so
that both parties are satisfied. Although these approaches are

interesting and they have merit, some challenges persist con-
sistently. These include potential security threats and privacy
concerns. A granular (hourly) prediction of the load requests,
without the need for profiling each customer has two-fold
advantages. It reduces 1. privacy breaches and 2. maintains
consistent price for a community as a whole. Further, notable
deviations of the consumption from the predictions may be
addressed as a concern by the authorities. Also, in the case
of deviations in the actual trend, the proposed Augrid method
dynamically modifies the cost of per unit energy, in contrast to
monthly prices, which otherwise may lead to unplanned energy
consumption, and eventually decrease the supplier’s incentive.

III. BIAS AND BACKGROUND ON LSTM

Conventional neural networks are incapable of exploiting
past observations (experience) and decisions. While recurrent
neural networks (RNNs) overcome this issue, they cannot
depend on states that are beyond the recent past. LSTMs are
special RNNs that overcome such challenges with additional
gates and their features. In the first step, in the forget gate
layer, on receiving a new input, it first decides on the content
that needs to be forgotten. It uses a sigmoid function (values
between 0 and 1) to achieve this. It then uses its input gate
layer (another sigmoid function) for extracting the necessary
information from the new input and a tanh layer (values
between -1 and 1) to create a new vector representation of the
new input. It combines the two before adding to the previous
cell state from the forget gate layer. The LSTM then outputs
its results which is again a filtered version from a combination
of sigmoid and tanh functions (similar to the input gate layer).
In this work, we use the LSTM to keep track of the previous
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Figure 3: Load (bars) versus total renewable power (line).

2 observations. In the subsequent section, we first discuss the
dataset in this work and then present our training results.

IV. DATASET

We use the COVID-EMDA+ dataset [1], which consists of
data corresponding to the electricity market, public health,
weather, mobile device location, and a light satellite at night
of some of the typical cities in the United States from existing
marketplaces. The authors developed this dataset to primarily
study the impact of the COVID-19 pandemic on the electricity
markets, particularly over the years from 2017 to the present.
For realizing this work, among others, we focus on the power
generation from renewable sources (hydro, wind, and solar)
and load requests.

A. Power Generation

The COVID-EMDA+ dataset contains the energy generation
data of different marketplaces, such as CAISO, MISO, ISO-
NE, and others using different sources (both renewable and
non-renewable). We consider only renewable sources, typically
hydro, solar, and wind. Each of the records in Fig. 2 represents
the hourly energy generation by each source averaged over
the entire year. Please note that the figures represent the data
from the CAISO marketplace. We observe that solar and wind
power have not changed over the years. However, we observe
a decline in the energy from hydro sources (Fig. 2(d)) because
the US depends on other energy sources as hydroelectricity has
harmful effects on wildlife habitat, water quality, water life,
and reduces benefits to rivers. Climate changes also play a
significant role in energy generation from renewable sources.

We sum each of the hourly averages of energy generation and
present them in Fig. 3 (line).

B. Load Profile/Requests

The load profile represents the electricity or energy load on
the marketplace from different users/customers. It depends on
the user profile, climate, and holiday season. The bars in Fig.
3 depict the averaged hourly load requests on CAISO across
different years. We observe that the trend remains the same.
The line in each of the figures represents the total generated
power by renewable sources in Fig. 2. We infer that the gap
between the load and generation is significantly large (almost
67%), which results in the increased dependency on non-
renewable power sources. We observe a further increase in the
difference between the load and generation in 2020 (Fig. 3(d)).
This is due to the reduction in the hydropower in Fig. 2(d). The
difference in Fig. 3 strengthens the need for management and
administrative solutions as establishing new infrastructures for
increasing generation by renewable sources does not happen
overnight. We account for the importance of the load profiles
and develop a model that predicts the load from the perspective
of the supplier.

V. THE LSTM-BASED AUGRID MODEL

We take the CAISO load profile from the COVID-EMDA+
dataset and train an LSTM-based model (refer Section III). We
average each of the hourly load records across each month,
resulting in 24 data points. We use the load data from January
2017 for training our model and use it for predicting the same
for the subsequent months and years.
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Figure 4: Loss during training and validation.

Figure 5: Training the proposed LSTM model.

A. Training the LSTM Model

We use the hourly averaged data in January 2017 from CAISO
to train our model. We set the lookback to values greater than 1
to identify the least number of past load profiles necessary for
predicting the other monthly sequences. In our opinion, it is
beneficial to stochastically quantify predictions on time-series
sequences such as load profiles using the loss (mean square
errors) rather than accuracy. Fig. 4 represents the loss during
the training process. We observe that the training loss for both
the lookback values remains the same. However, on validation,
the model with lookback value 1 has a loss higher than that
in the case of lookback value 2 (refer epoch 400 − 500 in
Fig. 4). This is because the load profile changes with varying
seasons, holidays, electrical appliances, number of consumers,
and others, and lookback set to only 1 value is not sufficient
to predict the subsequent load sequence. More than 1 previous
value is necessary. Interestingly, we observe a loss of almost 0
on the validation data when the lookback value is equal to 2 at
400 epochs, and then the model converges (400−500 epochs).
It may be noted that, since we obtain convergence, we restrict
our representation in Fig. 4 to look back up to 2. It also helps
in maintaining the simplicity of representation. Based on this
observation, we set the lookback as 2. In summary, we require
two load requests to start predicting the rest. For instance, we
look at the load requests at 01 : 00 and 02 : 00 hours (Fig.
5) to predict the ones from 03 : 00 hours. We then slide on
to the next hourly predictions and repeat the same for all the
other days.

Figure 6: Network architecture.

VI. NETWORK ARCHITECTURE AND PRICING MODEL

In this section, we present a method for determining the price
of supplying each unit of energy from the suppliers. As shown
in Fig. 6, we consider a set of x geographically-aware energy
suppliers/market places M = {m1,m2, . . . ,mx} for a set of y
users U = {u1, u2, . . . , uy}. Each supplier (ma for instance)
offers its services to a subset of users/customers ucma

⊂ U .
We consider P basema

as the base price per unit for supplier
ma. This value of P basema

is dependent on the procurement of
raw materials, overheads due to energy generation, its storage,
and delivery. The base price depends on the supplier and we
assume that they strategically set it in compliance to their
conditions. We determine the variability on the base price (λ)
according to the difference in the actual load request from the
users against the outcomes of the LSTM prediction model in
Section V-A. For load requests (lub

) from user ub, we calculate
the total load request on ma as Lma(t) =

∑y
i=1 lub

(t). For
predictions Pma

for ma, we set the value of λ according to
the following conditions:

λma
(t) =

{
Lma

(t)− Pma
(t), if > 0

0, otherwise
(1)

Since the load request varies with each hour of the month,
we formulate the per-unit price as a function of time t. We
consider P sma

(t) as the selling price per unit for a supplier ma

and calculate it as:

P sma
(t) = P basema

+ αsma
× (tan−1(eλma (t)) + ε) (2)

where αsma
is an arbitrary constant for the supplier ma for

setting the rate of increase or decrease of P sma
(t) and ε is

some positive constant (useful when eλma = 0). Since we
consider a smart grids with multiple suppliers, we do not rule
out the possibility of borrowing energy from one another in
the case of surplus demand. Inspired from the work of [22],
we formulate the borrowing price as a quadratic cost function
in terms of the demand. Mathematically, for a demand from
mb (dmb

), we calculate the borrowing price by ma (P brma
) as:

P brma
(t) = P basema

+ αbrma
× [a(dmb

)2 + b(dmb
) + c] (3)



Fo
r P

er
so

na
l U

se
O

nl
y 6

where αbrma
and its purpose is similar to that of αsma

in
Equation 2 and a, b, and c are positive constants.
Theorem 1. The selling price (P sma

(t)) in Equation 2 is
convergent.

Proof. We prove that the proposed P sma
(t) is convergent by

solving limt→∞ P sma
(t). Using properties of limits, we modify

Equation 2 as:

lim
t→∞

P sma
(t) = lim

t→∞
P basema

+ lim
t→∞

αsma
(tan−1(eλma (t)) + ε)

(4)
The first term in Equation 4 is a constant which results
to P basema

. On the other hand, we remove the constants
from the second term and solve limt→∞ tan−1(eλma (t)).
The function ex has a range of [0,∞) and tan−1(x) has a
range of [−π/2, π/2]. Since we consider only positive values,
tan−1(x) has a range of [0, π/2] and [0,∞) ∩ [0, π/2] =
[0, π/2], implying:

lim
t→∞

P sma
(t) = P basema

+
π

2
(5)

which is a positive constant. We conclude that the proposed
per unit price in Equation 2 is convergent.

Algorithm 1: AuGrid predictions and cost of per unit
energy.

Input: Lma
(t− 2) and Lma

(t− 1)
// Previous 2 load requests since

lookback = 2
Output: P sma

(t)
// Cost of per unit energy

1 Predict Lma
(t) using the trained AuGrid model
// Input Lma

(t− 2) and Lma
(t− 1)

2 Calculate λma according to Equation 1
// Difference between predicted and

actual load request
3 Calculate P sma

(t) according to Equation 2
4 Broadcast to concerned users

Assumption and Future Work: In this work, we make the
following set of realistic assumptions:

• We consider a fixed set of users under each supplier and
refrain from considering user mobility and handoffs. In
this work, we focus only on making predictions on load
requests.

• We consider that all users under each supplier pay the
same price.

In the future, we plan to extend this work by considering the
heterogeneity of the user demands and determining the per
unit energy costs accordingly. These factors may be reflected
on a parameter β, such that price for a user ub is P costub

(t) =
βma
ub

(P sma
(t− 1)− P sma

(t)) + P basema
.

In summary, the proposed AuGrid system works according
to Algorithm 1. We take the previous two aggregated load

Table I: Hardware metrics (averaged) on training and deploy-
ing AuGrid.

i5 PC
(laptop)

Single
processor
board

Training time 48.442s 186.694 s
Prediction time 1.68 s 26.40 s
Model size 30 KB 25 KB
CPU usage (train) 66.21% 30.24%
RAM usage (train) 71.99% 34.61%
CPU usage (prediction) 31.71% 26.03%
RAM usage (predic-
tion)

67.14% 40.36%

requests (Lma
(t− 2) and Lma

(t− 1)) and use them as inputs
to the LSTM model (Step 1). We then calculate the difference
between the predictions and the actual load requests (Step 2)
and calculate the cost of per unit energy according to Equation
2 (Step 3). Finally, we broadcast it to the users (Step 4).
Asymptotically, Algorithm 1 (AuGrid) takes O(1) time for
generating its results in each iteration.

VII. PERFORMANCE EVALUATION

In this section, we present our observations from the exper-
iments on AuGrid using the dataset mentioned in Section
IV and the pricing model in Section VI. Towards the im-
plementation of this work, we use an i5 personal computer
laptop (Dell Inspiron) as well as a resource-constrained single
processor board (Raspberry Pi 3B+). We select these devices
to demonstrate the feasibility of implementing AuGrid on
resource-rich as well as resource-constrained devices and use
Python 3.7 for both devices.

A. Resource Consumption

We train and deploy the models in both the category of
devices. We present our observations (averaged) on executing
our experiments multiple times in Table I. As expected, we
observe a higher training time (187 s) in the case of the single
processor board in comparison to that in the case of PC (49
s). This is because of the lower clock cycles. Due to the same
reason, on average, while the PC takes 1.67 s for predicting
the load request sequence, the single processor board takes
26.40 s. However, the increased delay does not affect the
performance of the AuGrid system as it is not a hard real-time
task and such delay ranges are tolerable. On the other hand,
we observe that the PC requires 66.21% CPU for training and
31.71% for predicting, which is almost 30% more than the
resource-constrained device. This is because the PC executes
multiple other processes in the background in contrast to single
processor boards. This is the reason why we observe similar
patterns in the case of RAM usage.

We infer from our observations that the proposed AuGrid
system is feasible for deployment (both training and making
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Figure 7: Comparison of training (on Jan. 2017 data) and validation predictions across different months and years for CAISO
using AuGrid (LSTM) and ARIMA.

Figure 8: Predictions from the proposed LSTM model for CAISO marketplace.

predictions) in both resource-rich and resource-constrained de-
vices with ease. Its suitability on resource-constrained devices
implicitly dictates low-cost adoption on legacy systems.

B. Predictions from AuGrid

As mentioned earlier, we train the model on the load data
in January from CAISO. Fig. 7 depicts the predictions. We
observe that the predictions fit almost perfectly on the training

data (Fig. 7(a)), conforming to our observations in Fig. 4. We
arbitrarily choose one month from each year (2018 − 2020)
for representing our observations on making predictions on the
unseen data. In each case (Figs. 7(b) to 7(d)), we observe that
the predictions fit almost perfectly, irrespective of the month,
year, season, and other possible dependencies. It may be noted
that there are no predictions for 00:00 and 01:00 hours. This is
because the trained model needs two data points for making
the predictions. Further, we refrain from finding predictions
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Figure 9: Predictions from the proposed LSTM model for different marketplaces apart from CAISO.

at 22:00 and 23:00 hours after obtaining the declining trend
(point of inflection) at 17:00 or 18:00 hours. Another popular
method for forecasting data sequences is the Auto-Regressive
Integrated Moving Average (ARIMA) model. In contrast to
LSTMs, it does not depend on neural networks and the gates
mentioned in Section III. Instead, it depends on a statistical
analysis of the data using regressions, integrations, and moving
averages (as the name suggests). The autoregression helps
in regressing the lagged and prior values. The integration
differences and helps in converting the non-stationary data
to stationary. Finally, the moving average helps in smoothing
the results as a result of the difference between the lagged
observations and residual errors. Typically, ARIMA models
are useful for non-stationary data, which is not the case of
the scenario considered in this work. Figure 7 contains the
root mean square error for both AuGrid and ARIMA. We
observe consistently high RMSE values (almost 500 units) for
ARIMA throughout all the cases. We account for the men-
tioned conditions and consider the LSTM-based forecasting
method. Finally, using Fig. 7, we establish the efficiency of
the proposed model and present its predictions for all months
across 2017−2021 in Fig. 8. The box plots represent the actual
distribution of the load profiles in the COVID-EMDA+ dataset
along with the outliers. Since the developed model generates
the actual load profiles efficiently, predictions like those in Fig.
8 (for CAISO) may be used to study the possible requests at
the marketplaces. To further demonstrate the effectiveness of
the proposed model, we arbitrarily present its predictions on
August 2020 for marketplaces apart from CAISO (Fig. 9).
Interestingly, we observe that although we train the model on
data from CAISO, it predicts those for other marketplaces with
high precision. We attribute this behavior to the nature of load
consumption as its pattern does not change. We infer that the
developed model is suitable across marketplaces and suppliers.

Additionally, we train another LSTM using the same lookback
value as earlier and use it to predict the monthly load request in
the CAISO. Fig. 10 depicts the predictions of the load request
for each month over the years. We observe that the model is
incapable of making these predictions as efficiently as those in
Fig. 8. We observe relatively better predictions for the years
2018 (Fig. 10(b)) and 2019 (Fig. 10(c)). On the other hand, we
observe incorrect predictions in the case of 2017 (Fig. 10(a))
and 2020 (Fig. 10(d)). We attribute this undesired increase of
the mean square error to the low number of training data points
(only 12). We infer that additional tuning is necessary to help
the model for predicting the monthly load requests. We plan
to address this issue in our extended work.

C. Benchmark and Comparison

We compare the per unit selling price in Equation 2 and our
bias of considering auguries with the works of Saghezchi et al.
[2]. They proposed a game theory-based solution (GT-DSM)
for setting the prices for demand-side management. They
formulated the price for per unit energy from the smart grids
as a function of the aggregated load requests as P = AL2

agg

where Lagg is the aggregated load request and A is a pre-
defined constant set to 0.1.

Fig. 11 depicts the price per unit energy from the smart grids
for each year. We set the price as 13.19 cents per kWh [23].
As expected, we observe that the price set by AuGrid is much
less (almost 75%) than that of GT-DSM. This is because they
are dependent solely on the hourly load requests in contrast to
Augrid, and are more concerned about the difference between
the load requests and the predictions (refer Equation 2). We
also observe that the fluctuations in load requests (hourly) re-
flects in the prices set by GT-DSM throughout all years (Figs.
11(a)-11(e)). AuGrid, on the other hand, demonstrates a much
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Figure 10: Predictions from the predictive model across different years for CAISO.

Figure 11: Comparison of price per unit kWh.

stable price for the same load requests, which corroborates
with Theorem 1. The low selling price may be a concern for
low profits by the marketplaces. To overcome this issue, the
Augrid model has a constant value P sma

(t). The marketplaces
may set it according to their convenience and techniques like
[24] coupled with the forecasts by Augrid may be used to
optimize them. It may be noted that the low prices set by
Augrid may not be acceptable by suppliers wanting to make
high profits. To overcome this issue, the suppliers may set
higher values to P basema

. However, accounting for the pandemic,

we maintain parameters that are considerate.

VIII. CONCLUSION

In this paper, we proposed an LSTM-based load request
prediction model (AuGrid) for smart grid service providers
with a lookback set to 2. We also formulated a pricing model
based on the predictions from AuGrid in contrast to those
that solely depend on the load requests and energy generation
rates. The results from our experiments show the stability of
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the proposed model and also corroborates the fact that the
service providers offer better load and price when the future
is known. We demonstrated the feasibility and robustness of
the proposed AuGrid system using real-world datasets. We
also presented its implementation and deployment on both
resource-rich and resource-constrained devices with minimal
hardware consumption. While we observed increased delays in
training and making predictions on the single board processors,
these delays are tolerable as we make hourly predictions,
which need not be real-time

In the future, we plan to extend this work by considering the
heterogeneity of the users and setting the individual per-unit
prices accordingly. We also plan to further improve AuGrid to
offer better monthly predictions.
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