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Abstract—In this paper, the problem of strategic resource
management in fog networks is discussed while considering a pay-
per-use model, similar to that used in cloud. Fog networks are
distributed in nature, because of which resource management in
these networks is an NP-hard problem. In the existing literature,
the researchers focused on resource management in fog networks,
while considering the network delay constraint. However, none
of these works considered the effect of pricing policy while
deciding on resource allocation. Hence, there is a need for
pricing-based resource management in fog networks. In this
work, we proposed a dynamic pricing-based resource allocation
scheme, named FogPrime, for analyzing the trade-off between
the service delay and the associated price. In FogPrime, we
use dynamic coalition-formation game to decide the resource
allocation strategy locally within a cluster. On the other hand,
we use utility game to choose the fog nodes, strategically, while
considering the aforementioned trade-off. Through simulation,
we observed that FogPrime outperforms the existing schemes
in terms of satisfaction of the involved entities – the end-
user and the fog nodes. Using FogPrime, the satisfaction of
the end-users and the fog nodes increases by 24.49–47.82%,
respectively. Additionally, we observe that FogPrime ensures an
even distribution of profit among the fog nodes and enables the
end-users to pay less at most by 15.88–47.27%.

Index Terms—Fog Computing, Game theory, Pricing, Dynamic
Coalition formation, Utility game, Offloading.

I. INTRODUCTION

With the advent of the Internet of Things (IoT), fog net-
works have become popular as there is a trend to shift the
computing resources from cloud to the edge networks [1]. In
fog networks, the computing resources, including storage and
network, are placed at the edge, thereby reducing the latency in
serving the applications. In fog networks, the applications are
deployed closest to the fog nodes to ensure reduced delay. Due
to this, the load on the fog nodes depends on the user density.
Additionally, we observe that a subset of nodes of the fog
network is oversubscribed, which degrades the performance
of the fog networks. On the other hand, fog network extends
the cloud architecture to the edge [2]. Hence, we argue that
the service provisioning in fog networks also abides by the
properties of cloud architecture. In other words, the service
provisioning in fog networks needs to follow the pay-per-use
model. However, in the existing literature, the researchers did
not focus on the business model of fog networks.

Fog networks provide the platform to support the application
requirements of the end-users. In the existing literature, the
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researchers considered the presence of a single cluster in a fog
network and proposed models to optimize resource utilization
while focusing on minimizing the latency in provisioning ser-
vices [3]. The existing literature focused on different aspects
of fog networks such as reliability, the capacity of the fog
nodes, and delay [4]. However, no work exists on the business
perspective of fog networks. In the presence of multiple clus-
ters in the decentralized fog networks, the competition among
the clusters gives rise to an ‘oligopolistic’ market scenario.
Additionally, we argue that fog networks also support the ‘pay-
per-use’ model, which necessitates the designing of resource
management schemes for these networks. The fog networks
are distributed in nature. Hence, the resource management
schemes designed for cloud infrastructure cannot be used for
fog networks.

In this work, we propose FogPrime, a scheme based on
coalition formation and utility game-theoretic approaches, to
handle the problem of dynamic pricing-based resource man-
agement in fog networks. We consider that, within a cluster,
the fog nodes are cooperative. However, the individual clusters
are non-cooperative. On the other hand, the end-users aim
to achieve a trade-off between the price paid and delay in
services. In FogPrime, we consider that each cluster comprises
of a single master node and multiple fog nodes. Initially, the
end-users inform the clusters available about the application
requirements. Thereafter, the master nodes evaluate the fog
nodes that satisfy the requirements of the end-users. Accord-
ingly, the master nodes decide the local equilibrium subset
of fog nodes and inform the end-users. Thereafter, each end-
user decides the global equilibrium subset of fog nodes while
minimizing the price to be paid and the associated service
delay. In summary, specific contributions are as follows:

1) We propose a dynamic pricing-based resource man-
agement scheme, named FogPrime, for fog networks, while
considering user satisfaction. We evaluate user satisfaction as
the trade-off between the price to be paid and the associated
service delay.

2) In FogPrime, the problem of resource management in
fog networks is divided into two parts — (a) local strategic
resource management within a cluster, i.e., an equilibrium
subset of fog nodes within a cluster, and (b) global strategic
resource management.

a) To identify the equilibrium subset of fog-nodes, locally, we
use a dynamic coalition-formation cooperative game with
transferable utility. This is to be executed by each master
node in the cluster to find the equilibrium subset of fog
nodes, locally.
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b) We use utility game to find the equilibrium subset of fog
nodes, globally. This is to be performed by the end-users to
obtain the equilibrium subset of fog nodes while ensuring
the trade-off between the price to be paid and the associated
delay.

3) We present three different algorithms to ensure optimal
resource management in fog networks while choosing an
equilibrium subset of fog nodes.

II. RELATED WORKS

In the existing literature, resource management in fog net-
works mainly focused on latency minimization, viz. [12]–[14].
Some of the works are discussed here. Abedin et al. [12]
and Zhao et al. [15] studied resource management in fog
networks considering the QoS requirements in ultra-reliable
low latency communications and enhanced mobile broadband
services. The authors formulated a joint user association
and resource allocation scheme using a two-sided matching
game to ensure a stable association between the fog network
infrastructure (i.e., fog devices) and IoT devices. Similarly,
Zhang et al. [11] proposed a resource allocation scheme for
fog networks, while formulating it as a joint optimization
problem. Nguyen et al. [13] proposed a resource allocation
scheme as a buyer-seller game where the services act as buyers
and fog resources act as divisible goods. The authors evaluated
the equilibrium for every service while designing the problem
to a convex problem. Akram et al. [3] evaluated different load
balancing schemes such as Round Robin, Throttled, Active
Virtual Machine, Particle Swarm Optimization, Ant Colony
Optimization, and odds algorithm for resource allocation in
fog networks in the context of smart grid. The authors showed
that Particle Swarm Optimization is most suitable for resource
allocation among the aforementioned techniques. Name et al.
[14] designed schemes for seamless handover of mobile IoT
devices in the context of fog networks. In this work, the
authors also considered the presence of cloud data centers
in the presence of fog networks. Shaik and Baskiyar [16]
considered the multi-layered fog architecture with different
parameters such as physical location, resources, privacy, and
security while allocating resources in the fog networks. Some
of the works in the existing literature focused on the pricing-
based resource allocation for heterogeneous services in fog
networks. Farooq and Zhu [9] proposed a price-based virtual
memory allocation scheme in which the authors considered
homogeneous services. On the other hand, Bandyopadhyay et
al. [10] designed a pricing-based resource allocation scheme
for fog networks in the presence of a single service provider.
Hence, these aforementioned approaches cannot handle price-
based resource allocation for heterogeneous services in fog
networks in the presence of multiple service providers.

In another work, Javaid et al. [17] used fog networks
for effective resource management in smart buildings while
ensuring low latency and high reliability. Vasconcelos et al.
[1] proposed to use a learning approach to decide the resource
allocation to support mobile devices. The authors showed that
fog networks help in the reduction of latency for provisioning
services to IoT devices. Similarly, Xiang et al. [18] proposed

a radio access network-based slicing scheme for fog using
a deep reinforcement learning while optimizing the caching
and evaluated for two scenarios – hotspot and vehicle-to-
infrastructure. Another radio access network-based content
sharing scheme is proposed by Yan et al. [19] for non-
orthogonal multiple access-enabled fog while using different
optimization approaches such as game theory and machine
learning. On the other hand, Zamil et al. [20] studied the
false alarm detection using the hidden Markov model in the
context of broadcasting false content in the fog networks.
Zhou et al. [21] focused on minimizing the network delay
using a matching game while offloading the computation task
to the fog nodes from the vehicular. The authors studied
vehicular ad-hoc networks in the context of fog networks. Du
et al. [22], [23] proposed a computation offloading scheme
for fog networks using the backbone of cloud infrastructure
while ensuring the fairness of the users and threshold delay of
requested service. The authors used mixed-integer non-linear
programming to design the scheme.

On the other hand, the researchers in the existing literature,
also designed schemes for price-based resource allocation in
cloud. Some of the works are discussed here. Ben Halima
et al. [5] proposed a linear programming-based optimization
model for resource allocation in cloud. The authors considered
that optimization is performed centrally in cloud. Chakraborty
et al. [6] proposed a pricing model-based resource allocation
scheme in sensor-cloud while considering the trustworthiness
of the service entity. Another game-theoretic resource allo-
cation scheme is designed by Misra et al. [7] for sensor-
cloud. The authors considered that the entities allocate cloud
resources to the end-users based on the price decided by the
centralized entity. Misra and Chakraborty designed another re-
source allocation scheme in Ref. [24] for sensor-cloud. Aazam
et al. [8] studied an on-demand resource allocation scheme
based on historical records. The aforementioned scheme also
follows a centralized approach. However, as these schemes
follow a centralized approach, these cannot be applied to
distributed fog networks.

Synthesis: In the existing literature, the researchers studied
different aspects of fog networks. In some of the works, the
authors focused on the mobility issue and its implications in
the context of fog networks. However, none of these works
considered the pay-per-use model in the fog networks. Similar
to cloud infrastructure, we argue that the pricing policies will
play an integral role in resource allocation in fog networks.
Moreover, the resource allocation schemes designed for cloud
environment follow a centralized approach and cannot be
applied for distributed fog networks, as mentioned in Table I.
Hence, there is a need for a pricing-based resource allocation
scheme in fog networks while considering that the service
provisioning in fog networks follows the pay-per-use model.

III. SYSTEM MODEL

In this work, we consider a fog network-based system
comprising of multiple fog nodes and multiple end-users. The
fog nodes are deployed over a geographical region and they
form clusters. In each cluster, a single fog node acts as the
coordinator, named as ‘master’ node, as shown in Figure 1.
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TABLE I: Comparison of Pricing-Based Resource Allocation Schemes

Price-Based Resource Allocation IoT-Enabled Fog Network Features

Decentralized Heterogeneous Dynamic
Configuration Fog Cloud

Ben Halima et al. [5] 7 7 3 7 3

Chakraborty et al. [6], Misra et al. [7] 7 3 3 7 3

Aazam et al. [8] 7 7 7 7 3

Farooq and Zhu [9], Bandyopadhyay et al. [10] 7 7 3 3 7

Zhang et al. [11] 3 7 7 3 7

Fig. 1: Schematic Diagram of FogPrime Architecture

Master Node Selection and Cluster formation: We consider
that the master nodes are self-elected fog nodes while satisfy-
ing the following constraints:

Cf ≥ Cth and Ef ≥ Eth (1)

where Cf and Ef represent the computational capacity and
residual energy of fog node f , respectively. On the other hand,
Cth and Eth denote the threshold values of the computational
capacity and residual energy for getting selected as master
node. To optimize the number of master nodes, i.e., clusters,
the master nodes select |C| number of master nodes or clusters,
using p-dispersion method [24]. We assumed that there are, at
most, |C| service providers in the network. We considered that
the dispersion index Imi,mj of two master nodes mi and mj

is defined as their Euclidean distance in a two-dimensional
space having the difference in their computational capacities
along the X-axis and that in their residual energies along the
Y-axis. Mathematically,

Imi,mj =

√(
Cmi

− Cmj

Cth

)2

+

(
Emi

− Emj

Eth

)2

(2)

The master nodes aim to maximize fn(C) [24], where
fn(C) = min{Imi,mj

: 0 < i < j < |F|}. After selecting
the set of master nodes, each fog node f ∈ F joins the cluster
of the nearest master node based on the geographical distance
among them.

Additionally, there exist multiple service providers in the
fog network, where each service provider owns a cluster of

fog nodes. On the other hand, the end-users do not own the
fog nodes. However, they enjoy the service from the fog nodes
based on the pay-per-usage model which is similar to the
cloud-based services. The fog network is visualized to be
a distributed system, whereas the cloud-based networks are
centralized. Additionally, we argue that the fog nodes have
high computational capacity than normal IoT devices. Hence,
in the presence of multiple IoT nodes, the fog network ensures
services with low latency.

We consider that at a particular time instant t, each end-
user n ∈ N , where N is the set of end-users, requests to
serve a set of applications An(t) to the available clusters, i.e.,
the master nodes of the clusters. On receiving this request,
the master node of each cluster selects an optimal fog node
and informs the end-user. Thereafter, the end-user selects an
optimal cluster and informs the corresponding master node
to deploy the application. The master node of the selected
cluster deploys the application by initializing a container along
with a pod on the optimal fog node. On the other hand, we
consider that each cluster c ∈ C, where C denotes the set of
clusters available in the fog networks, comprises of Fc set
of fog nodes. Therefore, we argue that the set of fog nodes
F can be represented by

⋃
c Fc. Here, we assume that the

fog nodes are heterogeneous in terms of memory and CPU
capacities. Each fog node f ∈ F has computational and
memory capacities of Cf and Mf , respectively. In addition,
we argue that in traditional fog networks, there is a trend to
allocate the applications to the nearest fog nodes, which may
affect the overall performance of the fog networks. Hence,
unlike the existing literature, we aim to consider the price paid
by the end-users while scheduling the applications or jobs to a
subset of fog nodes. We assume that each end-user n is willing
to pay an amount pan

max for serving an application an ∈ An(t).
Hence, the following constraint needs to be ensured:

pna(t) ≤ pan
max (3)

where pna(t) denotes the price paid by the end-user n for the
service of application an.

In fog networks, the master node of each cluster needs to
ensure that the fog nodes are not oversubscribed. In order to
do this, while deploying a pod, each master node needs to
ensure the following constraints:

∑
a∈An(t),∀n

xa,fma ≤Mf and
∑

a∈An(t),∀n

xa,fca ≤ Cf (4)
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where ma and ca represent the specified memory and CPU
resources for each application a, respectively, and xa,f is a
binary variable and denotes the association of an application
a with an fog node f . We define xa,f as follows:

xa,f =

{
1, if application a is allocated to fog node f
0, otherwise

(5)
On the other hand, we consider that each fog node follows

a first-in-first-out (FIFO) model for executing applications,
similar to Kubernetes 1. However, for efficient management
of the fog network, each master node follows a redistribution
of the applications, that are in the process, after a fixed interval
which is assumed to be predefined2.

IV. FOGPRIME: THE PROPOSED PRICE-BASED STRATEGIC
RESOURCE MANAGEMENT SCHEME

To model the interaction between the master node and the
fog nodes in a cluster, we use a dynamic coalition-formation
cooperative game with transferable utility [25] for strategic
allocation of resource to the applications and utility theory for
strategic choice of each end-user. Hence, we argue that the
proposed price-based strategic resource management scheme,
named FogPrime, follows a multi-stage game-theoretic model.

Justification for Using Dynamic Coalition and Utility
Games: Dynamic coalition game is an important game-
theoretic approach to study the social welfare of forming a
group of players through their internal interaction. It is also
adaptive to the change in the surroundings. For the fog nodes,
each application is served for a finite time. Hence, we argue
that there will be a change in the surroundings, aperiodically,
in terms of active applications and their resource requirements.
Therefore, dynamic coalition game is one of the suitable
choices. Additionally, we consider an extension of the dynamic
coalition game by introducing the transferable utility. It signi-
fies that the centralized coordinator always ensures the overall
benefit of the system. Here, in FogPrime, the master nodes are
the centralized coordinators that ensure the improved network
performance of the cluster, i.e., fog networks, holistically, in
terms of satisfaction of the fog nodes, network delay, and
utilization of resources. The aforementioned problem can be
mapped to the bin-packing problem [24], which is NP-hard.
Therefore, we modeled the local strategic resource allocation
problem in fog networks using dynamic coalition game.

On the other hand, utility theory defines the satisfaction of
a consumer against any product in economics. Similarly, in
FogPrime, each end-user follows the utility theory to ensure
his/her satisfaction with an application to get served in the
fog networks. We argue that the satisfaction of each end-
user depends proportionally on his/her expectations in terms
of tolerable delay and paid price. Therefore, using the utility
theory, each end-user tries to ensure a trade-off between the
paid price and the tolerable delay, as a reduction in service
delay results in an increase in the price to be paid.

1https://kubernetes.io/
2It is to be noted that in this work, we do not consider the presence of

cloud infrastructure.

A. Game Formulation

In FogPrime, we consider that the incoming application
follows an M/M/1 queuing model for the master node and
fog nodes in each cluster. Therefore, the following proper-
ties are true: (1) each application is processed individually,
i.e., memoryless, and application arrivals follow a poison
distribution, and (2) application inter-arrival time follows an
exponential distribution. Hence, while allocating resources to
an application, we follow a first-come-first-serve model, as
mentioned earlier. In FogPrime, we consider that each fog
node signifies a coalition3. After receiving an application from
an end-user, the master node tries to find the equilibrium
coalition, i.e., an optimal fog node, to which the application
will be associated. In order to allocate an application a ∈ An

to fog node f ∈ Fc, the master node of cluster c takes into
consideration the different parameters such as associated trans-
mission delay dn,f , price paid by end-user pa

n

max, capacity4

and memory requirement of the application, i.e., ca and ma,
respectively, total and available capacity of fog node f , i.e.,
Cf and Ceff

f , respectively, and total and available memory
associated with fog node f , i.e., Mf and Meff

f , respectively.
Hence, depending on the availability of the fog nodes, end-
user n receives a set of prices, i.e., {· · · , pca(t), · · · } from the
available clusters, where pca(t) denotes the price charged by
cluster c. Thereafter, using utility theory, each end-user selects
an equilibrium cluster, while deciding a trade-off between the
price paid and the associated delay. The following are the three
components of FogPrime:

1) The set of applications An of each end-user n gets served
by a single cluster of fog nodes based on the availability.
However, the end-user always has an option to choose a single
cluster among the available clusters.

2) Each cluster c has a single master node, which uses a
dynamic coalition-formation cooperative game with a transfer-
able utility game. The master node decides which incoming
applications are to be deployed in which fog node within
the cluster and the price to be charged while maximizing the
payoff of its utility function Ua,c(·).

3) Each end-user n uses utility theory to decide the equi-
librium cluster in which the application a is to be deployed,
while maximizing the payoff of its utility function Ka,c(·).

1) Resource Allocation in Clusters: Initially, for each appli-
cation a, each end-user n requests the master nodes, i.e., the
available clusters, while mentioning the tolerable delay dath,
pa

n

max, ca, and ma. We consider that the set of clusters which
receives a request for serving the application a, is denoted as
Ca(t) ⊆ C. Thereafter, the strategy of the master node of each
cluster c ∈ Ca(t) is to select an optimal fog node f for serving
the application a, while maximizing the utility function Ua,c(·)
of the cluster c, as discussed in the following sections.

3Here, we would like to mention that in this work, we use two terminologies
— cluster and coalition, which are not similar. Each coalition is associated
with a fog node, where it signifies the group of applications deployed on that
fog node. On the other hand, the cluster signifies the set of fog nodes. Each
cluster has a master node, which is also a fog node.

4We consider that the computation capacity is measured by the number of
instructions executed per cycle.
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a) Utility Function of the Fog Nodes: The utility function
Ba,f (·) of each fog node f signifies the revenue earned by
providing services to the end-users. Each fog node f tries to
maximize its resource utilization while maximizing the earned
profit. The utility function Ba,f (·) of each fog node f has
the dependencies mentioned as follows. (1) The payoff of the
utility function Ba,f (·) decreases linearly with the increase
in resource requirement. For example, let us consider that
we have two applications a1 and a2 and the corresponding
resource requirements are ca1

and ca2
, respectively. We ar-

gue that FogPrime satisfies the constraint, Ba1,f (·, ca1
) <

Ba2,f (·, ca2
), while considering that ca1

> ca2
and the other

parameters are constant. (2) Similarly, with the increase in the
memory requirement ma of each application a, the payoff of
the utility function Ba,f (·) decreases. (3) The payoff of the
utility function Ba,f (·) varies linearly with the increase in the
price pfa , where pfa signifies the price to be charged by the
fog node f for provisioning services to application a. (4) We
argue that the price pfa varies exponentially with the change in
the transmission delay dn,f , as discussed in Section IV-A1b.
With the increase in the transmission delay dn,f , the price pfa
to be charged decreases.

Therefore, we formulate the utility function Ba,f (·) of each
fog node f as follows, while satisfying the aforementioned
properties:

Ba,f (·) =
pfa

φa
xa,f

Cf
+ (1− φa)xa,fma

Mf

− Lf

|Af (t)|+ 1
(6)

where φa is a constant for application an and denotes the
type of the application, i.e., computation or memory-intensive,
where 0 ≤ φa ≤ 1; Lf denotes the cost incurred by the fog
node f for maintaining the resources with high efficiency; and
Af (t) denotes the set of applications that have already been
allocated to fog node f . Here, we consider that Lf is constant
for each fog node f . Hence, each fog node f evaluates its won
payoff while satisfying the constraints mentioned in Equation
(4).

b) Price Function of Each Fog Node: Motivated by
Friis equation [26], we consider that the price received for
provisioning service decreases with the increase in the overall
delay dn,f 5. We consider that the price charged pfa is defined
as follows:

pfa = α+ β
pan
max

(dn,f )2 + ε
(7)

where α, β and ε are constants; and α > 0, 0 < ε << 1, and
0 < β < 1. We consider an ideal wireless network scenario,
and hence, do not consider the effects of noise and fading
in FogPrime. Hence, for mathematical modeling, we consider
that the transmission delay between two nodes n and f varies
linearly with the Euclidean distance δn,f between those nodes,
i.e., θδn,f , where θ is a constant.

c) Utility Function of the Clusters: The utility function
Ua,c(·) of each cluster c signifies that the overall revenue of
the cluster. The master node of each cluster tries to maximize

5We consider the transmission and processing delay.

the overall payoff of the cluster by choosing the strategic fog
node, i.e., the equilibrium coalition to deploy the pod of the
requested application. Therefore, according to the dynamic
coalition-formation cooperative game, in FogPrime, each mas-
ter node derives a preferential relation among the coalitions,
i.e., the fog nodes. Here, we consider that the payoff of the
utility function Ua,c(·) is calculated by using the following
equation, while satisfying the constraints in Equations (3) and
(4).

Ua,c(·) = max{Uf
a,c(·)} (8)

where Uf
a,c(·) signifies the overall payoff of the cluster while

allocating the incoming application a to fog node f . Based on
the payoff of Uf

a,c(·), the master node defines the preferences.
We define the utility function Uf

a,c(·) as follows:

Uf
a,c(·) = Ba,f (·)

∏
k∈Fc,k 6=f

{Ba′,k(·)|a′ ∈ [Ak \ {a}]} (9)

To illustrate this, we consider the following example. We
consider that two fog nodes f1 and f2 satisfy the con-
straints mentioned in Equation (4). However, we observe
that Uf1

a,c(·) ≥ Uf2
a,c(·). Therefore, the application would be

allocated to fog node f1, i.e., f1 B f2, where B represents the
relation – preference-over. Additionally, we argue that Fog-
Prime follows a transferable utility model. In other words, in
FogPrime, the profit of provisioning service to an application
is evenly distributed among the fog nodes within the cluster.
In other words, the objective of each cluster is to maximize
Ua,c(·), as defined below:

argf maxUf
a,c(·) (10)

while satisfying the constraints in Equations (3) and (4). In
FogPrime, based on the preference relation among the fog
nodes, the price to be charged for each cluster is decided.
We consider that each cluster c defines the price pca(t) to be
charged and the associated delay dn,c(t) for serving applica-
tion a is calculated as:

pca(t) =
{
pfa |f ∈ Fc and f B ∀k ∈ Fc/{f}

}
(11)

dca(t) = {dn,f |f ∈ Fc and f B ∀k ∈ Fc/{f}} (12)

2) Selection of Cluster for Acquiring Service: Based on the
information provided by each cluster – price to be charged
pca(t) and associated transmission delay dca(t), where c ∈ Cn,
each end-user n selects a subset of clusters using utility theory
based on his/her requirements. In FogPrime, the strategy of
each end-user is to maximize its utility function to ensure a
trade-off between the aforementioned parameters. The detailed
information on the utility function is discussed below.

a) Utility Function of the End-Users: The utility function
Ka,c(·) of each end-user n signifies his/her satisfaction by
availing service from the cluster c in fog network. The payoff
value of Ka,c(·) may vary based on the preference of the end-
users. Therefore, while designing the utility function Ka,c(·),
we ensure the following properties. (1) With the increase in



Fo
r P

er
so

na
l U

se
O

nl
y 6

the price, the utility function decreases. We consider that the
utility function follows a linear relation with the price charged.
(2) Each end-user wants to avail services with minimum delay.
Hence, we consider that with the increase in the transmission
delay, the payoff value decreases.

Therefore, we formulate the utility function Ka,c(·), as
follows:

Ka,c(·) =
1

γn + ζn

[
γn
pan
max

pca(t)
+ ζn

dath
dca(t)

]
(13)

where γn and ζn are constants for each end-user n, and
signifies the preferences among the paid price pca(t) and
associated delay dca(t). The objective of each end-user n is to
maximize his/her utility function, which is defined as follows:

argc maxKa,c(·) (14)

while satisfying the constraint dath ≥ dca(t). Moreover, the
constraint mentioned in Equation (3) is to be satisfied.

Algorithm 1 RAC: Resource Allocation in Each Cluster

INPUTS:
1: pan

max, {δn,f , Cf ,Mf , Lf ,Af}∀f , θ, α, β, ε, ca, ma, dath
OUTPUT:

1: pca(t), d
c
a(t)

PROCEDURE:
1: B ← {∅}; p← {∅}; d← {∅}
2: for each f ∈ Fc do
3: < v1, v2, v3 >← CALL RAF . Algorithm 2
4: p← p ∪ {v1}; d← v ∪ {v2}; B ← B ∪ {v3}
5: end for
6: for each f ∈ Fc do
7: Calculate Uf

a,c(·) using Eq. (9),
8: end for
9: Ua,c(·)← −∞; pca(t)←∞; dca(t)←∞

10: for each f ∈ Fc do
11: if Ua,c(·) < Uf

a,c(·) then
12: pca(t)← pfa and dca(t)← dn,f
13: end if
14: end for
15: Return < pca(t), d

c
a(t) >;

B. Equilibrium in FogPrime Scheme

To identify the strategic equilibrium [25] of FogPrime,
the preference relation among the super set of the possible
partitions Uf

a,c(·) of set Fc of the fog nodes in each cluster c
needs to be evaluated, as defined in Definition 1.

Definition 1. Given a set Fc of fog nodes in a cluster c and
the requirements of an incoming application a, the preference
of two probable partitions Pf and Pf ′ follows Pf � Pf ′ ,
if Uf

a,c(·) ≤ Uf ′

a,c(·), where f ′ 6= f and {f ′, f} ∈ Fc, is
satisfied. Therefore, we get that, in cluster c, the master node
can achieve local equilibrium by allocating the application a
to fog node f ′ ∈ Fc.

On the other hand, based on Definition 1, each end-user
n can achieve global equilibrium by satisfying the following
inequality while allocating each application a ∈ An.

Ka,c(·) ≤ Ka,c′(·) (15)

From Equation (15), we obtain that FogPrime ensures the
presence of global equilibrium and cluster c′ is the global
equilibrium solution for allocating the application a.

Algorithm 2 RAF: Resource Allocation in Each Fog Node

INPUTS:
1: pan

max, δn,f , θ, α, β, ε, ca, ma, dath, Cf , Mf , Lf , Af

OUTPUT:
1: pfa , dn,f , Ba,f (·)

PROCEDURE:
1: dn,f ← θδn,f
2: if dn,f ≤ dath, ca ≤ Cf , and ma ≤Mf then
3: Calculate the optimal price pfa using Equation (7)
4: Calculate Ba,f (·) using Equation (6)
5: Return < pfa , dn,f ,Ba,f (·) >
6: end if
7: Return <∞,∞,−∞ >

C. Algorithms

In FogPrime, the end-users, and the fog nodes interact with
one another in real-time to make an agreement for service
requirements and the price to be paid. Initially, each end-
user connects with the subset of clusters within his/her access,
distributively, and informs the requirements of the application
– memory, computation resource, and the threshold delay – to
be served. After receiving this information, the master node
in each cluster performs Algorithm 1 to decide the suitable
fog node. In the process, each master node calculates the
coalition payoff for each fog node using Algorithm 2, if the
application gets allocated to the particular fog node. Each
master node finds out the strategic subset of fog nodes that are
eligible to serve the requested application and informs the end-
user accordingly. By receiving the reply messages from each
cluster, using Algorithm 3, each end-user decides the strategic
subset of fog nodes/clusters to be selected based on the trade-
off between the service delay and the associated price. The
flowchart of FogPrime is presented in Figure 2.

Complexity Analysis: We observe that, in Algorithm 1, the
time complexity for line 1 is O(1). Algorithm 2 is invoked in
line 3 of Algorithm 1. We observe that the time complexity
of Algorithm 2 is O(1). Hence, for lines 2-5 of Algorithm 1,
the time complexity is O(|Fc|). Similarly, we observe that
lines 6-8 and 10-14 of Algorithm 1 have time complexity
O(|Fc|). For line 9 of Algorithm 1, the time complexity is
O(1). Therefore, the overall time complexity for Algorithm
1 is O(|Fc|), whereas the complexity for Algorithm 2 is
O(1). On the other hand, the time complexity of lines 1-2 of
Algorithm 3 is O(1). Therefore, the overall time complexity
of Algorithm 3 is O(|Cn|). Hence, we conclude that the time
complexity of FogPrime is O(|Fc|+ |Cn|).
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Algorithm 3 SCAS: Selection of Cluster for Acquiring Service

INPUTS:
1: pca(t),∀c ∈ Cn, dca(t),∀c ∈ Cn, pan

max, dath, γn, ζn
OUTPUT:

1: c∗ . Selected cluster
PROCEDURE:

1: c∗ ← NIL and Kn ← −∞
2: for each c ∈ Cn do
3: Calculate Ka,c(·) using Equation (13)
4: if Kn < Ka,c(·) then
5: c∗ ← c
6: end if
7: end for
8: Return c∗;

Fig. 2: Flowchart of FogPrime

Additionally, FogPrime consumes memory of the master
node of each cluster and the end-users. In Algorithm 1,
we observe that the memory consumption of each master
node is O(|Fc|), whereas the memory consumption of each
ordinary fog node is O(1), as shown in Algorithm 2. On
the other hand, the memory consumption of Algorithm 3 is
O(1). Therefore, we argue that the memory consumption of
FogPrime is O(|Fc|).

V. PERFORMANCE EVALUATION

To evaluate the performance of FogPrime, we simulated it
on a python-based platform. The detailed simulation platform
and the observations are discussed in the following sections.

A. Simulation Parameters

We simulated the fog network with multiple end-users and
multiple clusters with a finite number of fog nodes on a
python-based platform. We considered that the end-users and
the fog nodes are deployed randomly over an area of 100
km× 100 km. We varied the number of applications in the
fog network and evaluated the performance of FogPrime.
We consider that each end-user requests to serve a single
application. Additionally, we varied the number of fog nodes
and the number of clusters, as mentioned in Table II. We
selected the application requirements – CPU and memory
– randomly. Based on these requirements, the master nodes
select the strategic subset of fog nodes.

TABLE II: Simulation Parameters

Parameter Value
Number of applications 500, 1, 000, 2, 000
Number of fog nodes 100, 200, 300
Average number of incoming
app. 50-100/unit-time

Average number of serving app. 40-80/unit-time
Maximum price 20-40 unit/app
CPU requirement 0.2-1.0 mCPU/app
Memory requirement 50-100 mb/app
β, γn, ζn, φa 0.5
α 1
dath 30-50 ms
θ 1

299792458 s/m

B. Benchmarks

To evaluate the performance of FogPrime, we compare
with two schemes in the existing literature – (a) Computing
Resource Allocation scheme (IoTFog) [11], and (b) Trust
Enforcing Pricing scheme (DETER) [6]6. In IoTFog, Zhang
et al. [11] proposed a resource allocation scheme for fog
networks. In this work, the authors considered fog as a multi-
tier network. Using Stackelberg and matching games, the
authors formulated the resource allocation problem as a joint
optimization problem. However, the authors did not consider
the effects of the pricing model on fog networks. On the
other hand, in DETER, Chakroborty et al. [6] proposed a
pricing model based resource allocation scheme in sensor-
cloud. In this work, the authors considered a hierarchical
service-oriented architecture in the presence if end-users,
sensor-owners, and sensor cloud service provider and decided
the allocation of resources while focusing on the trustworthi-
ness of the service entity, and accordingly evaluated pricing.
However, this scheme is not suitable for fog networks. Hence,
for the sake of uniformity, we remodeled the DETER pricing
scheme for fog networks and compared it with FogPrime.

C. Performance Metrics

We compare the performance of FogPrime while consider-
ing the following performance metrics.
Price Paid by the End-Users: We consider that the price
paid by the end-users is evaluated based on Equation (7) for
the three schemes. However, we clarify that for the decision
of resource allocation, price is one of the important factors
in FogPrime. We note that the end-users try to pay less while
ensuring that their service requirements are satisfied.
Delay in Service: We consider that the delay in service
comprises of two factors – processing and transmission
delays. The end-users aim to reduce the delay in service while
paying less. Hence, the end-users need to make a trade-off
between the service delay and the paid price.

6We considered two benchmark schemes – IoTFog and DETER – as
representatives of IoT-enabled fog networks and IoT-enabled cloud networks,
respectively. Hence, we compared the performance of FogPrime with these
two existing benchmark schemes which are most suitable for the application
scenarios considered in this work.
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Fig. 3: Average Price Paid by the End-Users
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Fig. 4: Average Service Delay per Application
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Fig. 5: Application Satisfaction

Satisfaction of the End-Users: We evaluate the satisfaction
sfe(t) of the end-users based on the following equation:

sfe(t) =

{
1− pc∗

a (t)
pa
max

, if dn,f ≤ dath, ca ≤ Cf , & ma ≤Mf

0, otherwise
(16)

We argue that the satisfaction of the end-users becomes zero
if their delay or resource requirements are not fulfilled.
Satisfaction of the Fog Networks: We evaluate the satisfac-
tion sfFog(t) of the fog networks, as the ratio of cumulative
price earned for utilizing unit resource and the maximum
price which can be earned per unit resource consumption.
Mathematically,

sfFog(t) =
∑
f∈F

∑
n∈N

∑
a∈An(t)

xa,f
pfa
pamax

(17)

We argue that if the resource utilization of a fog node
increases and the price charged by the fog nodes reduces
significantly, the change in the contribution of that fog node
to the satisfaction of the fog networks tends to zero.

D. Results and Discussions

For simulation, we observe that for the considered de-
ployment, the number of formed clusters is 5 and simu-
lated for 50 unit time. We observe that using FogPrime,

the applications having less delay threshold end up paying
high. Using FogPrime, the end-users can choose from a local
equilibrium subset of fog nodes, while ensuring a trade-
off between the price and delay. However, using IoTFog,
the closest fog node which satisfies the delay and resource
constraint of the end-users get selected. Therefore, IoTFog
does not explore the eligible set of fog nodes for serving
the end-users’ applications. Therefore, the end-users end up
paying high while having less delay. On the other hand, using
DETER, the end-users eventually generate an affinity towards
a subset of fog nodes. We observe that these affinity fog nodes
are close to the end-users; hence, the price paid by the end-
users are highly similar to the IoTFog. Therefore, we observe
that the price paid by the end-users is almost similar, i.e., the
minimum price, using FogPrime and IoTFog in the presence
of less number of applications. However, with the increase
in the number of applications, it decreases significantly using
FogPrime than using IoTFog. Moreover, Figure 3 depicts
that, using FogPrime, the amount paid by the end-users for
provisioned applications reduces at most by 15.88–47.27%
than using IoTFog and DETER while ensuring that the service
requirements such as delay and resources, i.e., computational
capacity and memory, are satisfied.

On the other hand, from Figure 4, we observe that the
incurred service delay increases using FogPrime than using
IoTFog and DETER. This is since, using IoTFog, the closet
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Fig. 6: Fog Network Satisfaction
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Fig. 7: Comparison of Applications’ Parameters (Number of Applications = 1000)
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Fig. 8: Fog Network Satisfaction (Number of Apps. = 1000)

fog nodes which satisfy the resource requirements, i.e., com-
putation resource and memory, are selected. Similarly, using
DETER, the fog nodes closer to the end-users have high trust
values. Therefore, the service delay using IoTFog and DETER
is lesser than that using FogPrime. However, FogPrime ensures
a trade-off between the service delay and the price charged.
Hence, we yield that FogPrime ensures price-based strategic
resource allocation in fog networks.

Figure 5 depicts the application satisfaction of the end-
users. We observe that using FogPrime, there is an increase of
24.49-47.82% in the application satisfaction of the end-users
than using IoTFog and DETER. FogPrime allocates resources,
strategically, while ensuring the service requirements are sat-
isfied and the end-users pay less. On the other hand, the other
existing approaches focus on allocating resources in a greedy
manner, which results in decreased user satisfaction. We
observe that, using FogPrime, the delay in service increases
in comparison with the existing schemes IoTFog and DETER,
as mentioned earlier. From Figure 5, we get that, though
the average delay in service increases using FogPrime, the
end-users pay a lesser price than using IoTFog and DETER,
which confirms the result obtained from Figure 3. Addition-
ally, Figure 6 depicts that the overall satisfaction of the fog
networks increases by 30.35-49.92% using FogPrime than
using IoTFog and DETER. The reason behind this observation

is that using IoTFog and DETER, the closest fog nodes of
the end-users are oversubscribed. Consequently, the processing
delay increases significantly, whereas most of the fog nodes
in the fog networks remain idle. However, using FogPrime,
we observe that each fog node gets an equal opportunity
to get selected for serving an application. Additionally, we
observe that the satisfaction of each fog node is random, as
the allocation of a fog node to serve an application is decided
by the local eligible clusters in the fog networks. Therefore,
we argue that using FogPrime, the average fog node utilization
increases, which, in turn, increases the satisfaction of the fog
networks.

On the other hand, from Figures 7(a) and 7(b), we observe
that, with the increase in the number of fog nodes in the
network, the price paid by the end-users and service delay per
application decreases. This is since, with the increase in the
number of fog nodes, the availability of fog nodes increases.
However, we observe that using FogPrime, the price paid per
application is less than using IoTFog and DETER, as the
existing schemes use a greedy approach and select the nearest
possible node, as mentioned earlier. On the other hand, due to
reduced price per application, the application satisfaction of
the end-users increases with the increase in the number of fog
nodes, as shown in Figure 7(c). Moreover, from Figure 8, we
observe that, with the increase in the number of fog nodes, the
satisfaction of the fog network decreases, which supports the
facts observed earlier. Although there is a reduction in network
satisfaction with the reduction in price per application, we
observe that using FogPrime, network satisfaction is higher
than using IoTFog and DETER. This is because of using
FogPrime, a high number of applications are served than using
IoTFog and DETER.

Hence, we conclude that FogPrime outperforms the existing
schemes – IoTFog and DETER – while minimizing the
charged price and the associated delay.
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VI. CONCLUSION

In this work, we proposed a dynamic pricing-based resource
allocation scheme, named FogPrime, for fog networks. We
considered that the fog networks comprised of multiple clus-
ters in the presence of multiple end-users. In each cluster,
we have a single master node and multiple fog nodes. In
FogPrime, initially, the end-users send the service request to
the clusters. Using dynamic coalition-formation game with
transferable utility, the master nodes decide a local equilibrium
subset of fog nodes eligible for service the requested appli-
cation. Thereafter, each end-user using utility game decides
the global equilibrium subset of fog nodes/clusters, while
minimizing the service delay and associated price. Through
simulation, we observed that FogPrime outperforms the exist-
ing schemes in terms of resource utilization and the price paid
by the end-users.

In the future, this work can be extended while considering
the presence of cloud architecture in the presence of fog
networks. Through simulations, we observed that a subset of
applications is not served due to the limitation of resources.
Hence, this work can be extended while exploring the mi-
gration of services from fog networks to the cloud to ensure
that all the services are getting served. This work also can
be extended while consolidating the service requests from the
end-users, and provisioning a single fog node for the subset
of applications.
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