
D2M: Mobility-Aware Dynamic Data Multicasting
in Software-Defined Data Center Networks

Sudip Misra and Ayan Mondal
Department of Computer Science and Engineering

Indian Institute of Technology Kharagpur, India
Email: {sudipm, ayanmondal}@iitkgp.ac.in

Pankaj Kumar
Department of Computer Science and Engineering

National Institute of Technology Patna, India
Email: pankajkumar1406094@nitp.ac.in

Abstract—In this paper, we study the problem of mobility-
aware dynamic data multicasting in software-defined Data Cen-
ter Networks (DCNs) in the presence of Internet of Things (IoT)
devices. In the existing literature, researchers studied that due to
unbalanced traffic distribution in DCN, the network throughput
and delay degrade significantly. Moreover, with the integration
of heterogeneous IoT devices, the difficulty in achieving balanced
traffic distribution increases. Hence, there is a need to design an
efficient data multicasting scheme in DCN, while integrating the
software-defined network architecture. In this work, we propose
a Dynamic Data Multicasting scheme, named D2M, using single
leader multiple follower Stackelberg game for ensuring high
utilization of network capacity and efficient load balancing. In
D2M, the controller acts as the leader, and the switches act as the
followers. The leader decides the distribution of flow-rules among
the switches for ensuring efficient load-balancing. We represent
bandwidth distribution as a pseudo-Cournot competition, where
each follower decides the optimal bandwidth to be allocated for
each flow. The existence of at least one Nash equilibrium using
D2M is ensured. Through simulation, we observed that using
D2M, the network throughput increased by 6.13-95.32% than
using existing schemes, while ensuring 21.32-99.29% reduction
in delay.

Index Terms—Data Multicasting, Mobile IoT Devices,
Software-Defined Data Center Networks, Load Balancing, Net-
work Capacity, Stackelberg Game

I. INTRODUCTION

In the last decades, with the increase in the number of
Internet of Things (IoT) devices, the amount of generated data,
named ‘big-data’, increased significantly [1]. Traditionally,
big-data is processed in Data Center Networks (DCNs) formed
by interconnecting multiple data centers. Hence, there is a
need to integrate IoT devices into the DCN architecture.
Moreover, due to the increase in the number of IoT devices,
the number of flows in the network increases. Hence, in
this work, we consider software-defined DCN for ensuring
flow-based data traffic management in DCN. In the existing
literature, researchers focused on designing schemes for traffic
distribution in traditional DCNs. Additionally, few works,
viz. [2], considered data broadcasting among IoT devices.
However, there is a need for designing data multicasting
schemes for DCNs in the presence of mobile IoT devices.
In this work, we consider the fat-tree based software-defined
DCN architecture in order to ensure a reduction in blocking
probability [3].

A. Motivation
In the existing literature, most researchers consider the

fat-tree architecture for DCNs, in order to ensure multi-
ple paths having equal-cost between any pair of hosts [4]
and high bandwidth inter-connectivity. However, unbalanced
traffic distribution is one of the important problems in fat-
tree DCNs. In the existing literature, researchers proposed
different scheduling techniques for data unicasting [5] and
multicasting [3] in fat-tree DCNs. However, there exists no
scheme for data multicasting scheme in software-defined fat-
tree DCNs. Additionally, in the presence of IoT devices [6],
multicasting data in real-time is a challenge [2], which needs
to be addressed in fat-tree-based software-defined DCNs. In
this work, we consider that the controller decides the flow-rule
association matrix for efficient load balancing. On the other
hand, the switches decide the optimum amount of bandwidth
to be allocated to each flow for high utilization of network
capacity.

B. Contribution
In this paper, we use a single leader multiple follower

Stackelberg game for designing dynamic data multicasting
scheme, named D2M, in software-defined DCN. In D2M, the
controller takes strategic decision for rule placement among
the switches while ensuring efficient load balancing. On the
other hand, the switches are responsible for processing the
data packets. Additionally, we consider that the switches are
capable of bisecting the capacity into multiple resource blocks,
where a subset of resource blocks needs to be allocated for
each flow. Thereby, in D2M, we consider that the controller
acts as the leader and the switches act as the followers.
In summary, the specific contributions of this paper are as
follows:

a) We present the D2M scheme for dynamic data multicast-
ing in real-time in fat-tree based software-defined DCNs with
mobile IoT devices.

b) We use single leader multiple follower Stackelberg game
in order to ensure high utilization of network capacity and
efficient load balancing, where efficient bandwidth distribution
problem is visualized as a pseudo-Cournot competition.

c) We present two different algorithms. The first algorithm
is used for rule placement among the switches while ensuring
efficient load balancing. Thereafter, using the second algo-
rithm, each switch decides the optimal amount of bandwidth
to be allocated for each flow.

ayan
For Personal Use Only

II. RELATED WORK

In recent years, a number of research works studied big-data
processing and data delivery in DCNs. Some of the existing
literature are discussed in this section. Chen et al. [7] surveyed
the challenges in generation, acquisition, storage, and process-
ing of data. They also mentioned the applications involving
big-data such as — enterprise management, IoT, and social
networks, while including different medical applications and
smart grid. Lakhlef et al. [2] proposed agent-based broadcast
protocols for mobile IoT devices, while considering parallel
data broadcasting with limited channels. In another review
article, Jagadish et al. [8] cataloged different challenges for
understanding big-data while citing a case study about clean-
ing, analyzing, and interpretation of data or information. Paul
et al. [9] studied the optimal server provisioning problem in
DCN and proposed two different schemes — for minimizing
operational cost and for minimizing capital and operational
cost, jointly, based on a discrete-time model. Wu et al.
[10] proposed a big-data broadcasting scheme for distributed
system. The authors considered that the source device has the
maximum bandwidth or capacity, and modeled the network
as a Lock-Step Broadcast Tree (LBST).

On the other hand, a few research works studied in data
unicasting and multicasting in fat-tree based DCNs. Raiciu et
al. [11] proposed a Multipath Transmission Control Protocol
(MPTCP) in DCN for data unicasting. Chiu and Lau [12] pro-
posed a scheme for efficient multicast broadcast services using
transmitter-side channel state information. Al-Fares et al. [13]
proposed a Dynamic Flow Scheduling (HEDERA) scheme
for data multicasting, while aggregating network resources.
Guo and Yang [3] studied multicasting in DCNs with fat-tree
topology. The authors claimed that their work is one of the
pioneering work while exploring multicasting in fat-tree based
DCNs. However, these works do not consider multicasting in
software-defined fat-tree DCNs, where the controller considers
each flow separately and installs the flow-rules in the SDN
switches while ensuring reduced network delay.

Synthesis: Thus, we infer that there exist a few works on
big-data processing and data broadcast in DCN. Additionally,
there are few works on data unicasting and multicasting in tra-
ditional DCN. Additionally, using the multicasting approaches
proposed for the traditional DCN, optimal throughput with
an optimal delay in the network cannot be ensured due
to the presence of heterogeneous IoT devices. Hence, there
is a need for designing a multicasting scheme for proper
utilization of available bandwidth in software-defined DCN,
while maximizing network throughput and minimizing the
network delay.

III. SYSTEM MODEL

In this paper, we consider a software-defined DCN, where
DCN follows the fat-tree architecture. A fat-tree is a net-
work architecture having three tiers — core, aggregation,
and edge. The routers at the core-tier are responsible for
connecting the intra-networks. We consider that the routers
have enough bandwidth to support the connected switches at
the aggregation-tier, as shown in Figure 1. On the other hand,

Fig. 1: Schematic Diagram of Fat Tree-based Software-define
DCN with IoT Devices

the switches are responsible for providing communication
services to the end-devices at the edge-tier. Additionally,
we consider that the switches and the routers in the fat-
tree DCN have limited ternary content-addressable memory
(TCAM). In other words, the flow-tables have limited number
of flow-entries. We consider that each switch s ∈ S , where
S is the set of switches, provides services to Fs(t) set of
heterogeneous flows at time instant t. Considering that each
IoT device generates at most one flow at time instant t, we
have — |Ns(t)| = |Fs(t)|, where Ns(t) ⊆ N , and Ns(t)
and N denote the set of active devices in data generation
and the available heterogeneous IoT devices, respectively.
These heterogeneous IoT devices are mobile in nature and
connected wirelessly with the switches at the aggregation-tier
through access points (APs). In addition to the IoT devices,
the edge-tier includes data-servers. These data-servers are
connected with the switches at the aggregation-tier using d
wired connection, as shown in Figure 1.

Additionally, we consider that each SDN switch s ∈ S has
a capacity of Cs (in kbps). We consider that each flow fn ∈
∪Fs(t), where n ∈ N , has a minimum data-rate requirement
which is denoted as rminn (in kbps). The maximum data-rate
of the flows generated by the heterogeneous IoT devices are
constrained by hardware limitations. We denote the maximum
data-rate of flow fn as rmaxn (in kbps). Hence, the actual data-
rate rn(t) (in kbps) of each flow fn has to satisfy the following
constraint:

rminn ≤ rn(t) ≤ rmaxn (1)

Therefore, at time instant t, the number of IoT devices
which are getting served by each switch s, needs to satisfy
the following constraint:

Crems ≥
∑

fn∈Fs(t)

rn(t), ∀s ∈ S (2)

where Crems is the remaining capacity of switch s after
allocating bandwidth to the data center servers. Considering
that each flow fd associated with data-server d ∈ D, where D
is the set of data-servers in the software-defined DCN, handles

ayan
For Personal Use Only

data-rate rd(t), we define Crems as follows:

Crems = Cs −
∑

fd∈Fs(t)

rd(t) (3)

We consider that a set IoT devices N (t) ⊆ N generates
a set of flows F(t) at time instant t.Therefore, we have
— F(t) =

⋃
s Fs(t). Additionally, we define an associative

variable xns, which is defined as follows:

xns =

{
1, if fn ∈ Fs(t)
0, otherwise (4)

Proposition 1. For each flow fn ∈ F(t), the following
condition is true:

1 ≤
∑
s∈S

xns ≤ 4 (5)

Proof. In the software-defined DCN, we argue that flow-rule
associated with each flow fn needs to be installed at least
one SDN switch in case of intra-pod communication. On the
other hand, the flow fn needs to be matched at most four
intermediate SDN switches, as we have considered two-tier
fat-tree architecture. Therefore, we argue that the condition
mentioned in Equation (5) is true.

A. Assumptions
While designing the proposed scheme, D2M, we considered

the following assumptions:
(i) We consider that each IoT device is always connected

with one the of access points available in the software-defined
DCN.

(ii) We consider that the centralized controller controls the
flow-rules to be installed at the switches.

(iii) The controller can change its strategy of choosing an
optimal source node at any given instant if it finds a source
node with high payoff.

(iv) Each IoT device, which is downloading data, is inter-
ested in a single flow.

IV. DYNAMIC DATA MULTICASTING (D2M) SCHEME

A. Game Formulation
For modeling the interaction between the SDN switches

and the controller, we use single leader multiple follower
Stackelberg game. In the proposed scheme, D2M, we consider
that the controller acts as the leader and installs the flow-rules
in the SDN switches. Additionally, the controller decides the
source node of the flow for each destination. On the other
hand, the SDN switches, which act as the followers, decide
their respective strategy, non-cooperatively. The followers help
the controller to manage the network properly while deciding
the amount of bandwidth to be allocated for each flow and
optimize the usage of overall capacity. The proposed scheme,
D2M, is formulated as a pseudo-Cournot competition. The
components in the D2M are as follows:

(i) The controller acts as the leader. It decides the optimal
route of for each flow and flow-rules to be installed to which
switches.

(ii) Each SDN switch act as a follower. The switches make a
trade-off between the associated flow-rules and the bandwidth
allocated for each flow.

(iii) Each switch tries to maximize its satisfaction factor,
which is defined in Definition 1 while maximizing the network
throughput.

(iv) We consider that each flow fn, which is generated by
IoT device n, comprises of Mn amount of data (in Kb).

Definition 1. The satisfaction factor ρs(t) of each switch s is
defined as the ratio of amount of bandwidth allocated to Fs(t)
flows and the capacity Cs of the switch. Mathematically,

ρs(t) =

∑
fn∈Fs(t)

rn(t) +
∑

fd∈Fs(t)

rd(t)

Cs
(6)

1) Justification for Single Leader Multiple Follower Stack-
elberg Game: In SDN, the tasks – network control and packet
processing – are divided into two planes – control and data
planes, respectively. The switches contain the data plane and
inform the controller if there is a table-miss. On the other
hand, the controller, which is associated with the control
plane, takes care of the flow routing and updates the flow-
tables at the switches. Hence, we consider that software-
defined DCN follows a leader-follower architecture. Thereby,
in order to model the interactions among the controller and
the switches, we consider single leader multiple follower
Stackelberg game theoretic approach. In the proposed scheme,
D2M, the controller decides the optimal routing path among
the source-destination pair, for ensuring delay-optimal data
multicasting. Thereafter, the switches decide the amount of
bandwidth to be allocated for each flow while ensuring
the throughput-optimal data multicasting. Hence, data mul-
ticasting in software-defined DCN resembles an oligopolistic
market scenario. Hence, we argue that a single leader multiple
follower Stackelberg game is the most suitable approach for
data multicasting in software-defined DCN.

2) Utility Function of Controller: The utility function Uc(·)
of the controller signifies the overall network delay for multi-
casting while maximizing the network lifetime. The controller
decides the source node for each flow in multicasting and
the routing path while maximizing the payoff value of utility
function Uc(·). The utility function Uc(·) needs to satisfy the
following properties:

(i) With the increase in hop-count, the payoff value de-
creases.

(ii) With the increase in residual energy of the source IoT
device, payoff value increases.

(iii) If the source node selected for a flow associated with
a destination is serving other flow(s) associated with other
destination(s), the payoff value increases.

Therefore, we consider that the utility function Uc(·) of the
controller is a linear function and is defined as follows:

Uc(·) =
∑
s∈S

∑
fn∈Fs(t)

(
αn

Eresn (t)

Emax
+ βn

hfn(t)

4
+ γnan(t)

)
(7)

where Emax and Eresn (t) denote the maximum and residual
energy of IoT device n at time instant t; hfn(t) denotes the
hop-count associated with flow fn; and an(t) is a binary
variable and denotes the state of IoT device s. We defined
an(t) in Definition 2. In Equation (7), αn, βn, and γn are

ayan
For Personal Use Only

constants specified for flow fn. These constants ensure that
the associated coefficients have similar numeric impact on the
payoff value of utility function Uc(·). The controller tries to
maximize Uc(·), while ensuring the constants mentioned in
Equations (2) and (5).

Definition 2. We consider that each IoT device n have two
states — idle and active. Additionally, we consider that the
IoT devices at idle state has zero energy consumption, whereas
the energy consumption of the IoT devices in active state is
finite and positive. Therefore, the binary variable an(t) of IoT
device n is defined as follows:

an(t) =

{
1, if IoT device n is in active state
0, otherwise (8)

3) Utility Function of Each Switch: The utility function
Us(·) of each switch s signifies the utilization of capacity
of the switch, and the flow-associated delay. Each switch
decides the amount of bandwidth to be allocated to each
flow fn ∈ Fs(t), while maximizing the payoff value of the
utility function Us(·). Hence, Us(·) must satisfy the following
properties:

(i) With the increase in the satisfaction factor ρs(t), the
payoff value increases.

(ii) With the increase in each flow-associated delay, the
payoff value decreases.

(iii) With the increase in overall delay associated with Fs(t)
flows, the payoff value decreases.

Therefore, we define the utility function Us(·) as follows:

Us(·) = ζs
∑

fn∈Fs(t)

rn(t)

rmaxn

+ φs
∑

fn∈Fs(t)

Mn

rn(t)
+ ϕsρs(t) (9)

where ζs, φs, and ϕs are constants for switch s. These
constants ensure that the associated coefficients have similar
numeric impact on the payoff value of utility function Us(·).
The first and second terms in Equation (9) signify the uti-
lization of capacity per flow and the flow-associated delay,
respectively. Hence, each switch aims to decide an optimal
data-rate for each flow fn ∈ FS(t), while maximizing the
payoff value of Us(·) and satisfying the constraints mentioned
in Equations (1) and (2).

B. Existence of Nash Equilibrium

We consider the Nash equilibrium of the proposed scheme,
D2M, as defined in Definition 3. We argue that at the Nash
equilibrium point, the players cannot increase their payoff
value by deviating from the equilibrium point.

Definition 3. We define the Nash equilibrium point as a tuple
of r∗n(t) and n∗, where n∗ and r∗n(t) represent the optimum
source node for flow fn and the optimum bandwidth allocated

to IoT device n∗, respectively. The Nash equilibrium point
needs to satisfy the following constraints:

Uc(Eresn∗ (t), hfn∗ (t), an∗(t), E
res
−n∗(t), hf−n∗ (t), a−n∗(t)) ≥

Uc(Eresn (t), hfn(t), an(t), E
res
−n∗(t), hf−n∗ (t), a−n∗(t))

(10)

Us(r∗n(t), r∗−n(t)) ≥ Uc(rn(t), r∗−n(t)) (11)

where a−n∗(t) = {ak∗(t)|∀fk ∈ F(t) and k 6= n}. Simi-
larly, we can define Eres−n∗ and hf∗−n

(t). On the other hand,
r∗−n(t) = {r∗p(t)|∀p ∈ Fs(t) and p 6= n}

We argue that the proposed scheme, D2M, follows a finite
perfect information game theoretic approach. Additionally, the
players in D2M follow pure strategies. Therefore, using the
backward-induction method, we can ensure that there exists
at least one Nash equilibrium point in the proposed scheme,
D2M [14].

C. Solution of D2M Scheme

The controller selects its optimal strategy based on pref-
erence relation of the available strategies. For example, we
consider there are two flows f1 and f2, and IoT devices n′

and n′′ have the data for multicasting, i.e., these devices are
probable source nodes. We consider that the controller has a
preference relation —

(f1 → n′, f2 → n′) � (f1 → n′′, f2 → n′′) �
(f1 → n′, f2 → n′′) � (f1 → n′′, f1 → n′) (12)

based on the following information:

Uc(·)|(f1→n′,f2→n′) � Uc(·)|(f1→n′′,f2→n′′) �
Uc(·)|(f1→n′,f2→n′′) � Uc(·)|(f1→n′′,f1→n′) (13)

On the other hand, each switch s decides the amount of
bandwidth to be allocated for each flow fn ∈ Fs(t). Using
Karush-Kuhn-Tucker (KKT) condition, we get Equation (14),
where λ1,n, λ2,n, where fn ∈ Fs(t), and λ3 are Lagrangian
multipliers. Additionally, we have:

λ1,n, λ2,n, λ3 ≥ 0, ∀fn ∈ Fs(t) (15)

λ1,n(rn(t)− rminn) = 0
λ2,n(rn(t)− rmaxn) = 0

}
, ∀fn ∈ Fs(t) (16)

λ3

Cs − ∑
fn∈Fs(t)

rn(t)−
∑

fd∈Fs(t)

rd(t)

 = 0 (17)

Hence, performing ∇rn(t)L = 0, we get:

r∗n(t) = [
Mn

φs
]
1
2

(
ζs
rmaxn

+
ϕs
Cs

)− 1
2

(18)

L = Us(t)−
∑

fn∈Fs(t)

λ1,n(rn(t)− rminn) +
∑

fn∈Fs(t)

λ2,n(rn(t)− rmaxn)− λ3[Cs −
∑

fn∈Fs(t)

rn(t)−
∑

fd∈Fs(t)

rd(t)] (14)

ayan
For Personal Use Only

Additionally, we get that ∇2
rn(t)
L ≤ 0. Hence, we argue

that at rn(t) = r∗n(t), Us(·) is maximized.

Algorithm 1 Optimal Flow Association Vector

INPUTS:
1: N , N (t), F(t), F(t), S
2: Eres

n (t), Emax, hfn (t), an(t), ∀fn ∈ F
3: αn, βn, γn

OUTPUT:
1: {xns}, ∀fn ∈ F

PROCEDURE:
1: Find Cartesian product of F and S
2: do
3: Chose a vector of {fn, s|∀fn ∈ F}
4: Calculate Un(·) using Equation (7);
5: while each element in Cartesian set is not visited for |S| times;
6: Calculate a preference relation among the calculated Un(·) values
7: Select the vector with highest preference value
8: return Corresponding {xns}, ∀fn ∈ F

Algorithm 2 Optimal Data-rate for Each Flow

INPUTS:
1: Fs(t), Cs; rd(t), ∀fd ∈ Fs(t); rmin

n , rmax
n , Mn, ∀fn ∈ Fs(t)

2: ζs, φs, ϕs

3: δ . Increment factor
OUTPUT:

1: {r∗n(t)}, ∀fn ∈ Fs(t)
PROCEDURE:

1: for each fn ∈ Fs(t) do
2: r∗n(t)← rmin

n
3: end for
4: Calculate Us(·) using Equation (9)
5: do
6: for each fn ∈ Fs(t) do
7: rn(t)← r∗n + δ
8: if thenrn(t) < rmax

n
9: Uprev

s (·)← Us(·)
10: Calculate Us(·) using Equation (9)
11: if thenUs(·) ≥ Uprev

s (·)
12: r∗n(t)← rn(t)
13: end if
14: end if
15: end for
16: while There is any change in {r∗n(t)}, ∀fn ∈ Fs(t)
17: return {r∗n(t)}, ∀fn ∈ Fs(t)

D. Proposed Algorithms

In the proposed scheme, D2M, initially, the controller
decides the xns ∈ {0, 1}, ∀fn ∈ F(t), and tries to mini-
mize overall network delay by using Algorithm 1. Here, we
assume that the controller has the knowledge that the IoT
devices are connected to which access points (APs) and the
corresponding SDN switches. Moreover, we consider that the
controller knows the set of IoT devices which are interested
in downloading the data. On the other hand, using Algorithm
2, each switch s decides the amount of bandwidth to be
allocated to the associated flows Fs(t), while satisfying the
constraints mentioned in Equations (2) and (3). Algorithm
2 needs to be executed by each switch, individually and
non-cooperatively. The time complexity for Algorithm 1 is
O(max(|F||S|, |S||F|)). On the other hand, the time complex-
ity for Algorithm 2 is O(K), where K ∈ R+. Therefore, the
over complexity of D2M is O(max(|F||S|, |S||F|) + K) ≈
O(max(|F||S|, |S||F|)).

V. PERFORMANCE EVALUATION

A. Simulation Parameters

For the performance evaluation, we simulate using JAVA-
based platform and deployed the IoT devices randomly over
a terrain of 1000× 1000 m2. However, the switches and the
routers are deployed in a grid fashion, while ensuring full
coverage. We consider that the source IoT devices generate
1000 number of data chunks, and the size of each data
chunk is 800 Mb, as mentioned in Table I. Motivated by the
device distribution of the Internet [10], we consider that the
distribution of IoT device capacities follows the distribution
mentioned in Table II.

TABLE I: Simulation Parameters

Parameter Value
Simulation Area 1000 m× 1000 m
Number of Nodes 1000-50000
Number of Switches 4
Number of Servers 3
Velocity of Source Nodes 5 m/s
Capacity of Switches 10 Gbps
Data chunks generated 1000
Size of each data chunk 800 Mb
Mobility model (MM) Random Gauss-Markov

TABLE II: Node Capacity Distribution [15]

Capacity (Kbps) Nodes (%) Capacity (Kbps) Nodes (%)
128 20 384 40
1000 25 5000 15

B. Benchmarks

The performance of the proposed scheme, D2M, is evalu-
ated while comparing with two existing schemes for DCNs
— the Lock-Step Broadcast Tree based big-data broadcasting
(LSBT) [10] and the Multicast Fat-Tree Data Center Networks
(BLO) [3] schemes. In LSBT, Wu et al. [10] proposed a big-
data broadcasting scheme, while forming a Lock Step Broad-
cast Tree. The authors also considered that the source device,
which has the maximum capacity in the network, is at the root
of the tree. On the other hand, in BLO [3], Guo and Yang
proposed a fat-tree based DCN. In BLO, the authors tried to
minimize the number of core switches needed to overcome
the problem of over subscriptions. Additionally, the authors
overlooked the problem of balanced bandwidth distribution.
Moreover, these works do not consider the software-defined
DCN in the presence of mobile IoT devices. In D2M, we
improve the network performance for data multicasting, while
ensuring optimal throughput and delay of the network.

C. Performance Metrics

We evaluate the performance of the proposed scheme, D2M,
using the following metrics:

Network Delay: We define network delay as the total time
required to complete the data multicasting in the software-
defined DCN.

Hop-Count for Network Flows: We calculate the overall
hop-count for the data multicasting. With the increase in hop-
count, the real-timeliness of the multicasted data degrades.

ayan
For Personal Use Only

 0

 0.25

 0.5

 0.75

 1

1000 5000 20000 50000

(b) Hop-Count

H
o
p

-C
o

u
n

t
(N

o
rm

al
iz

ed
)

Users

 D2M LSBT BLO

 0

 0.25

 0.5

 0.75

 1

1000 5000 20000 50000

(c) Network Throughput

T
h
ro

u
g

h
p
u

t
(N

o
rm

al
iz

ed
)

Users

 D2M LSBT BLO

 0

 0.001

1000 5000 20000 50000

(a) Network Delay

Users

 0.2

 0.4

 0.6

 0.8

 1

D
el

ay
 (

N
o
rm

al
iz

ed
)

 D2M LSBT BLO

Fig. 2: Performance Analysis of D2M

Network Throughput: The network throughput signifies that
the amount of data successfully transmitted from the source
node to the destination. With efficient load balancing, network
throughput increases significantly.

D. Results and Discussions

Figure 2(a) depicts that using D2M, the network delay
decreases by 21.32% and 99.29% than using BLO and LSBT,
respectively. In LSBT, delay increases significantly due to
the fact that LSBT multicasts data in intra-networks. Hence,
only after it reaches to a server at the edge-tier, the data
gets multicasted in the inter-network. On the other hand,
the network delay using BLO is higher than D2M due to
inefficient network load balancing. Similarly, from Figure
2(b), we observed that the hop-count using LSBT is signif-
icantly low as the source IoT device multicasts data in the
intra-network. Therefore, in fat-tree architecture, LSBT cannot
ensure data transfer to each IoT device. However, we yield that
using D2M, the hop-count reduces by 3.69-7.44% than using
BLO. We argue that D2M ensures efficient load balancing in
software-defined DCN.

On the other hand, from Figure 2(c), we observed that using
D2M, the network throughput increases by 6.13% and 95.32%
than using BLO and LSBT, respectively. As mentioned earlier,
using LSBT, the source node can only multicast data in intra-
network. Therefore, network throughput reduces significantly.
The network throughput using D2M is comparable with the
throughput achieved using BLO, as both schemes are designed
for DCN with fat-tree architecture. However, as D2M is
designed for software-defined DCN, the controller has an
overview of the network, which BLO lacks in. Thereby, we
argue that D2M ensures high utilization of network capacity
while distributing the network load efficiently compared to the
existing schemes — LSBT and BLO.

VI. CONCLUSION

In this paper, we formulated a single leader multiple fol-
lower Stackelberg game based D2M scheme to ensure high
utilization of network capacity and efficient load balancing in
software-defined DCN. We observed that D2M ensures the
reduction in network delay in the presence of mobile IoT de-
vices. Additionally, using D2M, network throughput increases.
From the simulation, we observed that D2M outperforms the
other existing schemes — LSBT and BLO.

Future extension of this work includes an understanding
of network bandwidth distribution in the presence of IoT
devices with heterogeneous data at the edge-tier of DCN.
Additionally, this work can be extended to understand how
network bandwidth is to be distributed while reducing the
energy consumption of the network.

REFERENCES

[1] O. B. Data. What is big data? [Accessed on: May 7, 2018].
[Online]. Available: https://www.oracle.com/in/big-data/guide/what-is-
big-data.html

[2] H. Lakhlef, A. Bouabdallah, M. Raynal, and J. Bourgeois, “Agent-Based
Broadcast Protocols for Wireless Heterogeneous Node Networks,”
Comp. Comm., vol. 115, pp. 51 – 63, 2018.

[3] Z. Guo and Y. Yang, “Multicast Fat-Tree Data Center Networks with
Bounded Link Oversubscription,” in Proc. of IEEE INFOCOM, Apr.
2013, pp. 350–354.

[4] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “VL2: A Scalable and Flexible
Data Center Network,” in Proc. of ACM SIGCOMM, Aug. 2009, pp.
51–62.

[5] F. R. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron, “Decen-
tralized Task-aware Scheduling for Data Center Networks,” in Proc. of
ACM SIGCOMM, Aug. 2014, pp. 431–442.

[6] B. Ciubotaru, C. H. Muntean, and G. M. Muntean, “Mobile Multi-
Source High Quality Multimedia Delivery Scheme,” IEEE Trans. on
Broadcasting, vol. 63, no. 2, pp. 391–403, Jun. 2017.

[7] M. Chen, S. Mao, and Y. Liu, “Big Data: A Survey,” Mobile Net. and
App., vol. 19, no. 2, pp. 171–209, 2014.

[8] H. V. Jagadish, J. Gehrke, A. Labrinidis, Y. Papakonstantinou, J. M.
Patel, R. Ramakrishnan, and C. Shahabi, “Big Data and Its Technical
Challenges,” Comm. of the ACM, vol. 57, no. 7, pp. 86–94, Jul. 2014.

[9] D. Paul, W. D. Zhong, and S. K. Bose, “Demand Response in Data Cen-
ters Through Energy-Efficient Scheduling and Simple Incentivization,”
IEEE Syst. J., vol. 11, no. 2, pp. 613–624, Jun. 2017.

[10] C. J. Wu, C. F. Ku, J. M. Ho, and M. S. Chen, “A Novel Pipeline Ap-
proach for Efficient Big Data Broadcasting,” IEEE Trans. on Knowledge
and Data Engg., vol. 28, no. 1, pp. 17–28, Jan. 2016.

[11] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley, “Improving Datacenter Performance and Robustness with
Multipath TCP,” in Proc. of ACM SIGCOMM, Aug. 2011, pp. 266–277.

[12] E. Chiu and V. K. N. Lau, “Precoding Design for Multi-Antenna
Multicast Broadcast Services With Limited Feedback,” IEEE Syst. J.,
vol. 4, no. 4, pp. 550–560, Dec. 2010.

[13] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic Flow Scheduling for Data Center Networks,” in Proc.
of USENIX Conf. on Net. Sys. Des. and Impl., Mar. 2010, pp. 1–15.

[14] R. W. Rosenthal, “Games of perfect information, predatory pricing and
the chain-store paradox,” Journal of Economic Theory, vol. 25, no. 1,
pp. 92–100, Aug. 1981.

[15] S. Saroiu, P. K. Gummadi, and S. D. Gribble, “Measurement Study of
Peer-to-Peer File Sharing Systems,” in Proc. of Int. Soc. for Optics and
Photonics - Mult. Com. and Net., vol. 4673, 2002, pp. 156–170.

ayan
For Personal Use Only

