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Abstract—In this paper, we address the issue of rule dupli-
cation during network information updates in Software Defined
Networking (SDN). In OpenFlow-enabled SDN, network update
involves the controller in sending update packets to desired set
of switches, where the update rules are installed. To ensure
update consistency, old flow rules are stored until the total
update procedure is complete. In worst case scenario, each switch
requires storage space of two times than the size required for
original number of rules. Furthermore, majority of the OpenFlow
switches have expensive ternary content addressable memories
(TCAMs). Higher consumption of TCAMs during update in-
creases cost of network update and decreases scalability of SDN.
Moreover, non-availability of storage space within update dura-
tion triggers packet drop. In this work, we propose an approach
for consistent update with redundancy reduction, named CURE,
that reduces TCAM usage during update. CURE prioritizes
switches according to their usage pattern and schedules update
based on priority zones. The proposed approach guarantees that
highly loaded switches are updated first. CURE also maintains
packet-level consistency by implementing a multilevel queueing
approach. In this framework, each switch, in current update
region, stores incoming packets in individual device queues until
it completes update. Therefore, after initiation of update, packets
are processed according to new rules only. We implemented our
scheme in Matlab environment. Average rule space utilization
during update in CURE is 29.954% less than the two-phase
update proposed in existing literature.

Index Terms—SDN, Network Update, Big Data, OpenFlow,
TCAM, Multiclass Classification, Queueing Theory.

I. INTRODUCTION

In traditional networks, each network device or switch
includes both a control plane and a data plane. Control plane
determines the forwarding rules for incoming packets. Data
plane stores the forwarding table, which is a collection of
the forwarding rules determined by control plane. Therefore,
traditional networks are complex and resistant to changes.
Software Defined Networking (SDN) is a new networking
paradigm which separates control plane and data plane to
provide network services dynamically [1]. In SDN, a single
controller or a cluster of controllers determines forwarding
rules and installs them to the switches. Switches are only
forwarding devices which store the forwarding tables and
forward incoming packets based on matched table entries.
With the rapid increase in data volume, dynamic nature of
SDN gets attention of researchers for implementing big data
solutions [2], [3]. Features of SDN such as — detachment
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of control plane from data plane, programmable network,
and availability of a global view of the whole network to a
centralized control plane, make SDN an attractive choice for
designing the backbone of collecting, processing, storing, and
analyzing big data.

Similar to other networks, updates in SDN occur frequently.
Major reasons for network update are — (1) optimization of
flow table, (2) flow swapping after arrival of new flows, (3)
traffic monitoring, (4) maintaining state of shut down switches,
(5) expiration of forwarding rules’ time-out, and (6) switch or
link failure [4]. Network update in traditional network involves
changing configuration of each switch, separately. On the
other hand, SDN update is triggered by the controller which
generates forwarding rules for new network configuration and
installs those rules to the required switches. Additionally,
controller performs garbage collection by deleting old rules
[5].

Presently, most of the OpenFlow switches available in the
market have Ternary Content Addressable Memory (TCAM).
TCAMs are high-speed memories which can match flow rules
in parallel in O(1) time. Each TCAM entry is a ternary string
consisting of 0, 1, and * (don’t care) having components are
match fields, priority, counters, instructions, timeouts, cookie,
and flags [6], [7]. Based on a forwarding rule, a single or
multiple TCAM entries can be generated [8]. In a simple
rule, there is an one-to-one mapping between each value and
match fields in a flow table entry. Whereas, for range rules,
some values such as port numbers are denoted by ranges.
Therefore, when transformed to ternary values, these rules
generate multiple TCAM entries [9]. SDN update is basically
addition of new TCAM entries and removal of older entries
from one or more switches [10]. Therefore, update of a single
forwarding rule causes update of a single or multiple TCAM
entries.

Existing network update techniques for SDN are centered
on four basic approaches such as Ordered Update, Incremental
Update, Timed Update, and Buffered Update. Ordered update
[11] is a sequence of update phases defined by the controller.
Each phase is executed after completion of previous phase.
In incremental update [12], network is updated in multiple
phases, where each phase updates a subset of switches. Each
switch maintains a record of both old and new configurations
until the total network gets updated. After completion of
update, flow table entries for old configuration are deleted.
Packet level consistency is maintained by ensuring that each
packet follows either the new configuration or the old con-
figuration. Both of these approaches require extra flow table
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space for accommodating duplicate rules. Moreover, controller
is involved until the completion of update for all the switches.
To reduce this overhead, Mizrahi et al. [5] proposed a timed
consistent network update scheme where updates are sched-
uled at specific time orders. This approach reduces duration
of storing duplicates rules in switches. Controller is only
involved at the beginning of update when it forwards update
instructions to all the switches. The switches execute updates
according to the predefined schedule. In buffered update [13],
incoming packets are buffered at the control plane until the
total update procedure is completed. This approach ensures
both packet-level consistency and flow-level consistency. How-
ever, controller load increases in this method. Therefore, none
of the existing SDN update approaches consider complete
elimination of redundant rules. In this work, we propose a
SDN update policy without storing redundant rules.

A. Motivation

Presently, OpenFlow is the most favoured protocol for im-
plementing SDN [14] [15]. Expensive TCAMs in OpenFlow-
based SDN switches consume a large amount of power [16],
[17] and occupy large footprints [18]. Power consumption in
TCAM is 100 times more than RAM storage per Mbit and
same amount of TCAM costs 400 times more than RAM
storage [19]. These constraints restrict storage capacity of
TCAMs [20]. However, existing SDN update policies require
storage of old configuration rules until the whole update
process is completed. These approaches require maintaining
extra storage space which leads to high cost. Hence, for
the worst case scenario 50% of the storage space needs to
be empty before starting network update. Therefore, cost
of storing redundant rules decreases scalability of overall
network. Furthermore, number of big data-based applications
are increasing. Continuous flow of high-volume data generates
high number of update entries for each flow table. Therefore,
providing storage space for both old and new TCAM entries
can be a bottleneck for big data applications.

In this paper, updates in SDN switches are scheduled in an
optimized manner so that high priority switches are updated
first. We build a priority index for all the switches based on
the frequency of matched rules. The packet level consistency
is also ensured by employing a packet-queueing mechanism
with minimum service latency.

B. Contribution

Our work aims to minimize TCAM usage for efficient
processing of big data. The primary contributions of our work
are listed below.

1) Initially, we determine the priorities of all the SDN
switches in the network. Each flow table entry in an
Openflow switch maintains a record of total number of
packets matched with that particular entry in past. We
used this record as input of a multiclass classification
algorithm to determine priorities for each switch.

2) We design a priority-based algorithm for scheduling
updates to SDN switches.

3) Finally, we propose a packet queueing mechanism for
maintaining consistency of incoming packets during
update.

C. Paper Organization

The remainder of this paper proceeds as follows. Section II
discusses the existing approaches for SDN update. In Section
III, we define the network model and describe the proposed
scheme. Section IV depicts the experimental results and
comparative studies with other existing approaches. Finally,
Section V concludes the work.

II. RELATED WORK

This section gives an overview of the existing literature re-
lated to network update in SDN. Existing literature in this field
can be categorized in four parts such as — Ordered update,
Incremental update, Timed update, and Buffered Update.

A. Ordered Update

In case of ordered update, controller partitions the total
update procedure into multiple stages. It waits for completion
of each stage before starting the next stage. The last stage is
garbage collection stage where older rules are deleted.

Updating network in an ordered manner is a well-researched
topic in networking domain. Francois et al. [11] proposed
an ordered update sequence for forwarding devices. The
proposed scheme ensures consistency by preventing loop. It
also allows rerouting of packets during failure of links or
forwarding devices. However, this approach requires modifi-
cation of network protocols as well as forwarding devices.
Clad et al. [21] generated an optimized sequence for updating
weights of links. The proposed greedy algorithm is free from
loops and does not require modification of network protocols.
Similar approach is proposed in Ref. [22] which considers
configuration update of Interior Gateway Protocols (IGPs).
The proposed approach encounters a large overhead due to
storage of two IGP configurations simultaneously. Thereby,
ordered update policy in SDN encounters service latency as
update of each phase is restricted by completion of update of
previous phase.

B. Incremental Update

In incremental update approach, network is updated in
multiple phases or rounds where each round updates a portion
of flow rules or a subset of switches.

Reitblatt et al. [12] proposed a two-phase update approach
where all the internal switches are updated in the first phase.
Next, the ingress switches are updated. Each updated ingress
switch attaches a new version tag to each of the incoming
packets. The switches maintain both the old and new rules.
The incoming packets are processed by either of them (not
both) only based on the version tag. This approach ensures
packet-level consistency. Older rules are deleted only when
there is no packet with old version tag existing in the network.
This method increases load on ingress switches as they have
to change the incoming packets. Moreover, memory overhead
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is incurred for storing old rules. In another work, Canini et al.
[23] also discussed similar approach. This work implements an
update approach similar to database transactions where either
all switches are updated or none. If any switch fails to update
during the procedure, all the previous updates are rolled back.

C. Timed Update

Mizrahi et al. [5] proposed an extension of OpenFlow
protocol by scheduling the update phases at particular time
instants for both ordered and incremental updates. This ap-
proach preserves packet level consistency by avoiding conflicts
in updates. Controller’s involvement during update procedure
is also reduced, as the controller sends update packets to all
the switches at the beginning of the update with attached time-
stamp value of scheduled update. This technique reduces the
duration of update as well as the duration required to store
older rules in SDN switches. However, synchronizing updates
to all the switches encounters computational complexity and
depends on characteristics of particular forwarding devices.

D. Buffered Update

Buffered update approach [13] redirects all the incoming
packets arriving at the switches to be updated to the controller.
These packets are buffered in the control plane until all the
switches are updated. After completion of update procedure,
the controller releases these packets, and thereafter the packets
are processed according to new configuration. The major
limitation of this approach is that it overloads the controller
and increases service latency for the affected packets.

All of the existing update approaches require storage of
older rules until the update procedure completes. As OpenFlow
switches have expensive TCAMs, storage of duplicate rules
turns out to be a major limitation, specially, when processing
of big data is required.

III. THE PROPOSED SCHEME

In this section, we describe the network model considered
for our proposed scheme, CURE. We indicate the different
symbols in Table I. We also discuss the approach for imple-
menting redundancy-free consistent update of SDN.

A. Network Model

We model the network as a graph G = (N ,L), where N is
the set of nodes, and L is the set of links between the nodes.
The set N can be expressed mathematically as:

N = C ∪ S, (1)

where C is the set of controllers, and S is the set of
OpenFlow switches. Figure 1 shows the proposed network
model. The upper bound of the number of flow rules which
can be stored in an OpenFlow switch Si is denoted as Ui. A
subset Singress of set S is considered as ingress switches which
have one or more ingress ports for receiving incoming packets.
Each switch Sj has an associated device queue denoted as Qj .
The set of immediate neighbors of a switch Sj is denoted by

neighbor(Sj). On the other hand, the set of links L can be
defined as:

L = Lcc ∪ Lcs ∪ Lss, (2)

where Lcc is the set of link between the controllers, Lcs
is the set of control links between the controllers and the
OpenFlow switches, and Lss is the set of data links between
the OpenFlow switches for packet forwarding.

For simplicity, we assume a centralized control plane con-
sisting of only a single controller C. Hence, S can be defined
as S = {S1,S2, ...,S|N |−1}. Lcc = φ and number of links
in Lcs is |S| = |N | − 1. Each link Li has an associate link
capacity ci.

Fig. 1: SDN architecture

Centralized controller installs forwarding rules in the
switches. These forwarding rules define the path of a flow
from source to destination without exceeding capacity of each
link. The set of incoming flows is denoted by F. We define
each flow Fa as a tuple < a,Patha,S(Fa) >, where a is the
flow id, Patha ∈ S, which is the sequence of nodes, defines
the flow path, and S(Fa) ∈ Singress is the ingress switch for
flow id a.

Each switch stores forwarding rules in one or multiple flow
tables [7]. Each flow table entry is a ternary string. Therefore,
a flow rule Rji in Sj can be represented as:

Rji ∈ FT
j
0 ∪ FT

j
2 ... ∪ FT

j
n−1, (3)

where FT jm is the mth flow table of an OpenFlow switch
Sj and n is the total number of flow tables for that switch. The
sets of rules in each of the flow tables of Sj are mutually exclu-
sive. A flow rule Rji is denoted by a tuple < Prji ,M

j
i , A

j
i >,

where Prji denotes rule priority, M j
i denotes set of match

fields, and Aji denotes set of action values. Each flow rule
also contains a set of counters for storing the rule statistics,
timeout value, cookie, and flags [7]. If an incoming packet
matches with multiple rules, then the rule with highest priority
value is selected and the corresponding action is taken.

Definition 1. The state of a switch Sj at time t is defined by:

Λj(t) = {Rj(t),Ljcs(t),Ljss(t), τ j(t)}, (4)
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where Rj(t) is the set of flow rules of switch Sj at time t,
Ljcs(t) ∈ Lcs is the set of control links involving Sj at time t,
Ljss(t) ∈ Lss is the set of data links involving Sj at time t,
and τ j is the last update time of Sj at time t.

Definition 2. The network configuration at time t is defined
by:

Γ(t) = {N (t),

|S|⋃
j=1

Λj(t)}, (5)

where N (t) ∈ N is the set of nodes at time t.

Definition 3. Network update in SDN is migration from one
network configuration Γ to another configuration Γ

′
such that,

Γ(ti) 6= Γ
′
(tj), (6)

where ti 6= tj .

Major objective for this work is to minimize TCAM usage
during update without congesting the links and to maintain
packet level consistency. This optimization problem can be
formulated as follows:

Minimize
|S|∑
j=1

size(Rj), (7)

where size(Rj) denotes the amount of TCAM used by rules
in Sj . Equation (7) computes the total TCAM used by all the
switches in the network to store flow rules. Subject to the
following constraints:

size(Rj) 6 size(Uj),∀Sj ∈ S (8)

Equation (8) expresses switch capacity constraint for storing
flow rules.

|F|∑
f=1

lfu,v 6 ck,∀u, v ∈ N ,∀Lk ∈ L, link(u, v) = Lk, (9)

where lfu,v denotes the load of flow Ff on the link con-
necting the nodes u and v which is denoted by link(u, v).
Equation (9) prevents the collective load of all the flows in a
link from exceeding the link capacity.

M j
r = M j

s and Ajr = Ajs,

∀Λj(ti) = {Rj(ti),Ljcs(ti),Ljss(ti), τ j(ti)},
∀Λj(tk) = {Rj(tk),Ljcs(tk),Ljss(tk), τ j(tk)},

ti < tk,

Rjr ∈ Rj(ti),
Rjs ∈ Rj(tk),

Duration(Rjr) < Duration(Rjs), (10)
where Duration(Rji ) is a counter [7], which denotes the

elapsed time after installation of the flow rule Rji . Equation
(10) prohibits storage of older and newer versions of a rule in
a switch simultaneously.

TABLE I: Notations

Symbol Definition
G A software defined network
N Set of nodes including controllers and switches
L Set of links between controllers and switches
C Set of controllers
S Set of switches
Qj Device queue for switch Sj
Singress Set of ingress switches
neighbor(Sj) Set of immediate neighbors of switch Sj
Ui Maximum flow rules stored in switch Si
Lcc Set of links between controllers
Lcs Set of control links
Lss Set of data links
ci Capacity of link Li
F Set of incoming flow
Pathi Sequence of nodes in path of flow Fi
S(Fi) Ingress switch for flow Fi
Rj Set of flow rules in switch Sj
τj Last update time of switch Sj
FT ji ith Flow table in switch Sj
Prji Priority of rule Rji
Mj
i Set of match fields of rule Rji

Aji Set of action values of rule Rji
Λj State of switch Sj
Γ Network configuration
Du Update duration
size(Rj) Amount of TCAM used by Rj

µj Mean service rate at Sj
λj Mean arrival rate at Sj
lfu,v Load of flow Ff on the link connecting the nodes u and v
link(u, v) Link connecting the nodes u and v
Duration(Rji ) Elapsed time after installation of Rji

B. Redundancy-free Consistent Update

In this section, we describe the proposed scheme, CURE,
for SDN update. Based on workload, we first classify the to-
be-updated switches into three priority regions, namely high,
medium, and low. Thereafter, we design an algorithm for
scheduling updates among the switches of different priority
regions. Next, we propose a packet queueing mechanism to
maintain packet level consistency during update. Finally, we
propose an algorithm for processing the queued packets.

1) Switch Classification: Each OpenFlow switch record
maintains a counter field which records details of the matching
packets. Based on the counter value, we build a training
data set. Therefore, we employ One-Vs-All (OvA) multiclass
classification algorithm [24] [25] to classify the to-be-updated
switches into three priority zones — low, medium, and high.
This classification depends on the network topology, packet
arrival rate, and existing flows in the network.

2) Rule Update: Algorithm 1 schedules update based on
the priority zones. Before starting the update, controller sends
UPDATE signal at time T0 to mark the set of switches which
are to be updated. Controller waits for a δ time interval before
sending the first update packet. Heavily loaded switches are
updated first at time Thigh > T0. Next, medium priority
switches are updated at time Tmedium > Thigh. Finally, low
priority switches are updated at time Tlow > Tmedium. During
update procedure at a switch, the set of new rules are installed
first and older rules are deleted thereafter. In other words,
garbage collection at each switch is performed right after
completion of update at the corresponding switch.
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Definition 4. After T0, a packet is marked old, if it is processed
by a switch which is yet to be updated.

Definition 5. After T0, a packet is marked new, if it is
processed by a updated switch.

When controller selects a priority region for update, all the
old packets in that region are processed before starting the
installation of new rules. This ensures that a packet already
processed by an old rule, is processed by old rules only. If
an old packet reaches an updated switch, the packet is sent
to controller for further decision. Similarly, if a new packet
reaches a to-be-updated switch which is not in the current
update region, the packet is sent to controller for further
decision.

Definition 6. Update duration is the time interval between
the dispatch of the first update message by the controller,
and update completion of the last switch including garbage
collection.

Definition 7. An old packet is termed inconsistent if it reaches
an updated switch. An new packet is termed inconsistent if
it reaches a switch which is not updated and not in current
update region.

Algorithm 1 Rule Update Algorithm

INPUT:
1: Slow . Set of low priority switches
2: Smedium . Set of medium priority switches
3: Shigh . Set of high priority switches

OUTPUT:
1: S

′′
. Set of updated switches

PROCEDURE:
1: S

′′
← ∅

2: for all Sj ∈ Slow ∪ Smedium ∪ Shigh do
3: SIGNAL(Sj , UPDATE) . Controller sends

update signal
4: WAIT (δ ms) . Controller waits for δ

milliseconds
5: end for
6: for all Sj ∈ Shigh do
7: Process P old . Process old packets

8: Insert Rj
′

. Add set of new rules
9: Remove Rj . Remove set of old rules

10: S
′′
← S

′′
∪ {Sj}

11: end for
12: for all Sj ∈ Smedium do
13: Process P old . Process old packets

14: Insert Rj
′

. Add set of new rules
15: Remove Rj . Remove set of old rules
16: S

′′
← S

′′
∪ {Sj}

17: end for
18: for all Sj ∈ Slow do
19: Process P old . Process old packets

20: Insert Rj
′

. Add set of new rules
21: Remove Rj . Remove set of old rules
22: S

′′
← S

′′
∪ {Sj}

23: end for
24: return S

′′

3) Packet Queueing: Algorithm 2 depicts a queueing mech-
anism for consistent processing of incoming packets during
an ongoing update procedure. The packet queueing algorithm

(PQA) is triggered for each to-be-updated switch in the present
update region after controller starts update in that region. If the
switch has received an UPDATE signal recently, PQA checks
whether the switch is already updated. PQA stores the packet if
the update process is incomplete in the corresponding switch.
Otherwise, the packet is processed.

Packets are stored in the queue of the corresponding switch
until the queue gets full. Thereafter, the packets are redirected
to the least priority switch belonging to a lower priority region
and having free buffer space within one-hop neighbors of
the corresponding switch. In this scenario, a switch-identifier
flag is added to the packet header specifying the switch id
where the packet arrived initially. The packets are buffered at
controller when no such neighbor exists. For each switch, we
maintain a counter that counts the number of packets stored
outside of the switch’s own buffer.

Algorithm 2 Packet Queueing Algorithm

INPUT:
1: Reg . Current update region
2: S

′′
. Set of updated switches

3: Sj . A switch in current update region
4: P j . Set of incoming packets at Sj

OUTPUT:
1: Pcount . Number of packets buffered outside

of Qj

PROCEDURE:
1: visitedNeighbors← ∅
2: for all P j

i ∈ P
j do

3: if Sj ∈ S
′′

then
4: Process P j

i . Standard packet processing
5: else
6: STOREPACKET(P j

i , Sj , j) . Insert packet to
Qj

7: end if
8: end for
9: return Pcount

10: function STOREPACKET(P j
i , Sk, j)

11: if Qk is not full then
12: Store P j

i in Qk

13: if k 6= j then
14: Pcount ← Pcount + 1
15: end if
16: else
17: if GETNEIGHBOR(Sj , Reg) 6= Null then . Get

one-hop neighbor
18: STOREPACKET(P j

i , GETNEIGHBOR(Sj , Reg), j)
19: else
20: Add flag(j) to P j

i

21: Buffer P j
i at C

22: Pcount ← Pcount + 1
23: end if
24: end if
25: end function
26: function GETNEIGHBOR(Sj , Reg)
27: Sneighbor ← Find least priority unvisited neighbor belonging

to a priority region lower than Reg
28: visitedNeighbors← visitedNeighbors ∪ {Sneighbor}
29: return Sneighbor

30: end function

4) Packet Processing: After completion of update, each
switch triggers the controller informing that it is ready for
processing packets. Algorithm 3 describes the procedure of
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processing the waiting-packets. If the triggering switch’s buffer
is full, the packet processing algorithm processes the first K
packets waiting at the queue of triggering switch itself. Then a
portion of the switch’s buffer is reserved for storing the waiting
packets with matching switch-identifier flag among its one-hop
neighbors. We name this buffer space as secondary buffer. Size
of secondary buffer is determined from the available counter
value. Packets waiting in the queue of a neighbor switch and/or
controller are shifted to secondary buffer. After processing
these packets the secondary buffer space is merged with the
switch’s original buffer before processing the new ones.

Algorithm 3 Packet Processing Algorithm

INPUT:
1: visitedNeighbors . Set of neighbors having

Su’s packets
2: Su . Switch which triggered waiting-packet

processing
OUTPUT:

1: P
′′

. Set of packets in secondary buffer
PROCEDURE:

1: if |Qu| == K then
2: P

′′
← ∅

3: Process first K packets in |Qu|
4: for all Sj ∈ visitedNeighbors do
5: for all P j

i in Qj do
6: if P j

i contains flag(u) then
7: Copy P j

i to secondary buffer of Qu

8: P
′′
← P

′′
∪ {P j

i }
9: end if

10: end for
11: end for
12: for all P j

i in Buffer(C) do . Process the
packets buffered at the controller

13: if P j
i contains flag(u) then

14: Copy P j
i to secondary buffer of Qu

15: P
′′
← P

′′
∪ {P j

i }
16: end if
17: end for
18: Process packets in secondary buffer
19: Merge secondary buffer with Qu

20: end if
21: Process packets in Qu

22: return P
′′

C. Queueing Model

Assuming a Markovian server per switch, queue of each
switch is modeled as a M/M/1/K/α queueing system,
where incoming packets follow Poisson’s distribution and
those packets are processed by the corresponding switch in
exponentially distributed service time. Let, 1

µj
and 1

λj
denote

the mean service time and mean inter-arrival time at switch
Sj , respectively. We also consider that each switch has a finite
queue length K. Figure 2 describes the queueing model for
SDN.

Figure 3 shows the state-transition-rate diagram of our
proposed queueing model for a single OpenFlow switch. The
average packet arrival rate and average service rate for the
switch be λ and µ, respectively. Therefore, the traffic intensity
is ρ = λ

µ . The switch is in region r ∈ {high∪medium∪low}.
Initially, controller sends update signal to the switch. The

Fig. 2: SDN Queueing Model

switch continues processing until region r starts update.
During update of region r, the switch queues the received
packets unless it completes update. Therefore, the service rate
for this stage is µ = 0. If the switch queue is full, the
packets are buffered at neighbor queues or at the controller
buffer according to Algorithm 2. After the switch completes
update, it processes packets from neighbor buffer as well as
its own buffer as mentioned in Algorithm 3. Therefore, the
new packet arrival rate is λ

′
= λ + λ

′′
, where λ

′′
is the rate

at which packets arrive to the current switch from the buffers
of neighbor switches. The traffic intensity in this scenario is
ρ
′

= λ
′

µ . After the switch processes all the packets stored in
neighbor queues, λ

′′
= 0 and λ

′
= λ.

The probability that the switch has i packets, when it
receives the update signal from the controller and r is not
the current update region is given by :

P 1
i = ρiP 1

0 , (11)
where P 1

0 is the probability that the switch has zero packets
when it has received the update signal.

We consider the scenario that region r starts update when
the switch has i packets queued and completes update when
it has j packets queued. During update, let the probability of
having n ≥ i packets be P 2

n . We know,

P 2
i = P 1

i (12)
Packets are added to the switch queue at a rate of λ and no

processing is performed during an ongoing update procedure.
Hence, we get:

λ× P 2
i = λ× P 2

i+1 = . . . = λ× P 2
K (13)

Therefore, we get:
P 2
i = P 2

i+1 = . . . = P 2
K = P 1

i (14)
Let P 3

j be the probability that the switch has j packets and
it has completed update. From Equation (14) we get:

P 3
j = P 2

j = P 1
i (15)

The probability P 3
j can also be expressed as:
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Fig. 3: State-transition-rate Diagram of CURE for an OpenFlow Switch

P 3
j = (ρ

′
)jP 3

0 , (16)
where P 3

0 is the probability that the switch has zero packets
after it has completed update.

From Equations (11),(15), and (16) we have:

ρiP 1
0 = (ρ

′
)jP 3

0 (17)

P 3
0 =

ρi

(ρ′)j
P 1

0 (18)

According to queueing theory for finite queue length, at
steady state:

P 1
0 + P 1

1 + P 1
2 + . . .+ P 1

K = 1 (19)

P 3
0 + P 3

1 + P 3
2 + . . .+ P 3

K = 1 (20)
From Equations (18) and (19) we get:

P 1
0 =

1− ρ
1− ρK+1

(21)

P 3
0 =

1− ρ′

1− (ρ′)K+1
(22)

Hence, from Equations (18) and (22), the probability P 1
0 is

defined as:

P 1
0 =

(ρ
′
)j(1− ρ′)

ρi(1− (ρ′)K+1)
(23)

Let Ls and L
′

s be the expected number of packets in the
switch before starting update and after completion of update,
respectively. According to definitions of queuing theory, we
know:

Ls =

K∑
n=0

nP 1
n =

K∑
n=0

nρnP 1
o

=
ρ

(1− ρ)(1− ρK+1)
(1 +KρK+1 − (K + 1)ρK) (24)

L
′

s =

K∑
n=0

nP 3
n =

K∑
n=0

n(ρ
′
)nP 3

o

=
ρ
′

(1− ρ′)(1− (ρ′)K+1)
(1 +K(ρ

′
)K+1 − (K + 1)(ρ

′
)K) (25)

Let Ws and W
′

s be the mean waiting time at the switch
before starting update and after completion of update, respec-
tively. From Little theorem, we know:

Ws =
Ls
λ

(26)

W
′

s =
L
′

s

λ′
(27)

Therefore, the increase in mean waiting time at the Open-
Flow switch due to update is given by:

W
′

s −Ws =
L
′

s

λ′
− Ls

λ

=
1

µ
(
1 +K(ρ

′
)K+1 − (K + 1)(ρ

′
)K

(1− ρ′)(1− (ρ′)K+1)

−1 +KρK+1 − (K + 1)ρK

(1− ρ)(1− ρK+1)
) (28)

After the switch completes processing all the packets stored
in neighbor queues, the difference W

′

s −Ws becomes zero,
eventually.

From Equations (21) and (23) we have:

1− ρ
1− ρK+1

=
(ρ
′
)j(1− ρ′)

ρi(1− (ρ′)K+1)
(29)

Simplifying Equation (29) we get:

ρi(ρ− 1) + ρi(1− ρ)(ρ
′
)K+1

−(1− ρK+1)(ρ
′
)j+1 + (1− ρK+1)(ρ

′
)j = 0 (30)

Theorem 1. The maximum arrival rate of packets from
neighbor queues after completion of update is λ

′′

max =(
1
µ

K
1+K

1

1− ρi(1−ρ)
(1−ρK+1)

)
− λ for j = K.
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Proof. Putting j = K in Equation (30), we get:

ρi(ρ− 1) + ρi(1− ρ)(ρ
′
)K+1

−(1− ρK+1)(ρ
′
)K+1 + (1− ρK+1)(ρ

′
)K = 0 (31)

Differentiating both sides of Equation (31) w.r.t. ρ
′
, we get:

(ρ
′
)K(ρi(1− ρ)(K + 1)− (1− ρK+1)(K + 1)

+(1− ρK+1)
K

ρ′
) = 0 (32)

As (ρ
′
)K 6= 0, we get:

ρi(1− ρ)(K + 1)− (1− ρK+1)(K + 1) (33)

+(1− ρK+1)
K

ρ′
= 0 (34)

Based on Equation (33), ρ
′

is defined as:

ρ
′

=
K

1 +K

1(
1− ρi(1−ρ)

(1−ρK+1)

) (35)

Differentiating Equation (32) w.r.t. ρ
′
, we get:

(ρ
′
)K−1(ρi(1− ρ)K(K + 1)− (1− ρK+1)K(K + 1)

+
(1− ρK+1)K(K − 1)

ρ′
) (36)

Putting value of ρ
′

from Equation (35) in Equation (36), we
get:

(ρ
′
)K−1K(K + 1)((ρi − 1)− ρi+1(1− ρK−i)) (37)

As 0 < ρ < 1, (ρi − 1) < 0 and (1 − ρK−i) > 0.
Therefore, the expression (ρ

′
)K−1K(K + 1)((ρi − 1) −

ρi+1(1 − ρK−i)) < 0. Hence, the maximum value of ρ
′

is
K

1+K
1(

1− ρi(1−ρ)
(1−ρK+1)

) . Therefore, the packet arrival rate λ
′

=

1
µ

K
1+K

1(
1− ρi(1−ρ)

(1−ρK+1)

) . Hence, the maximum arrival rate of

packets from neighbor queues after completion of update is
λ
′′

max = ( 1
µ

K
1+K

1(
1− ρi(1−ρ)

(1−ρK+1)

) )− λ for j = K.

Theorem 2. The minimum arrival rate of packets from
neighbor queues after completion of update is λ

′′

min =[
1
µ

(
(1−ρK+1)

(K+1)(1−ρ)

) 1
K

]
− λ for j = 0.

Proof. For j = 0 we get i = 0 as 0 ≤ i ≤ K and j ≥ i.
Putting j = 0 and i = 0 in Equation (30), we get:

(ρ− 1) + (1− ρ)(ρ
′
)K+1 − (1− ρK+1)ρ

′

+(1− ρK+1) = 0 (38)
Differentiating both sides of Equation (38) w.r.t. ρ

′
, we get:

(K + 1)(1− ρ)(ρ
′
)K − (1− ρK+1) = 0 (39)

Solving Equation (39) ρ
′

is expressed as follows:

ρ
′

=

(
(1− ρK+1)

(K + 1)(1− ρ)

) 1
K

(40)

Differentiating Equation (39) w.r.t. ρ
′
, we get:

K(K + 1)(1− ρ)(ρ
′
)K−1 (41)

As 0 < ρ < 1, (1 − ρ) > 0. Therefore, the expression
K(K + 1)(1 − ρ)(ρ

′
)K−1 > 0. Hence, the minimum value

of ρ
′

is
(

(1−ρK+1)
(K+1)(1−ρ)

) 1
K

. Therefore, the packet arrival rate

λ
′

= 1
µ

(
(1−ρK+1)

(K+1)(1−ρ)

) 1
K

. Hence, the minimum arrival rate of
packets from neighbor queues after completion of update is

λ
′′

min =

[
1
µ

(
(1−ρK+1)

(K+1)(1−ρ)

) 1
K

]
− λ for j = 0.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of CURE in
terms of the following metrics: update duration, average rule
space utilization, average packet waiting time, and inconsis-
tent packet count. To evaluate the performance metrics, we
have implemented a discrete event simulator in MATLAB
and performed two experiments. In the first experiment, we
measure update duration and average rule space utilization
while varying number of switches in a leaf-spine topology
with 2N

3 leaf (ingress) switches and N/3 spine switches (e.g.,
[5]). In the second experiment, we simulate three network
topologies available in the Internet Topology Zoo [26], namely
Sprint, NetRail, and Compuserve. We run five test flows in
each of these topologies to compute the performance metrics:
average packet waiting time and inconsistent packet count.

TABLE II: Simulation parameters

Parameter Value
Number of switches in leaf-spine topology 6− 48
Rule space size in a switch 8000 flow entries [27]
Upper bound on controller-to-switch delay 4.865 ms [5]
Upper bound on end-to-end network delay 0.262 ms [5]
Upper bound on time interval between dispatch of
two consecutive update messages 5.24 ms [5]

Average packet arrival rate per switch 0.005− 0.025 mpps
Average packet service rate per switch 0.03 mpps [28]
Average queue size per switch 0.01− 0.09 million packets
Flow table lookup time 33.33333 µsec [28]

A. Simulation Parameters

Table II represents the parameters which we have considered
for the simulation. We implemented leaf-spine topology by
varying the total number of switches from 6 to 48. The maxi-
mum number of flow entries in a switch has been fixed to 8000
[27]. As shown in Table II, we consider that the upper bounds
on controller-to-switch delay, end-to-end network delay, and
the time interval between generation of two consecutive update
messages are 4.865 ms, 0.262 ms, and 5.24 ms, respectively
[5]. The average packet arrival rate, average packet service
rate, and average queue size per switch are 0.2 million packets
per second (mpps) [29], 0.03 mpps [28], and 0.1−0.9 million
packets, respectively. We consider that the flow table lookup
time for each packet is 33.33333 µsec [28].

B. Result and Discussion
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(a) Sprint Topology (b) NetRail Topology (c) Compuserve Topology

Fig. 4: Test Flows in Sprint, NetRail, and Compuserve Topology

1) Update Duration: Update duration is calculated as the
time interval between the dispatch of the first update message
by the controller, and update completion of the last switch.
Garbage collection, i.e., removal of old rules are included in
the update duration, as defined in Definition 6.
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Fig. 5: Update Duration in a Leaf-Spine Topology

Figure 5 depicts the update duration for two-phase update
[12], timed two-phase update [5], and CURE in a leaf-spine
topology. For two-phase update (both untimed and timed), the
spine switches are updated in phase 1 and the leaf switches
are updated in phase 2. Garbage collection is performed after
completion of phase 2. From Figure 5, we can see that the
update duration for timed two-phase update is 27.919% less
than that of two-phase update. The update duration for CURE
is 37.563% less than that of two-phase update. The update
duration is almost similar for timed two-phase update and
CURE. From Figure 5, we yield that the update duration for
CURE is less as it does not have a separate garbage collection
phase.

2) Average Rule Space Utilization: We calculate the av-
erage rule space utilization as the percentage of rule space
used during different stages of update by N switches in the
leaf-spine topology.

Figure 6 shows the rule space utilization percentage for two-
phase update [12], timed two-phase update [5], and CURE.
Rule space utilization is almost similar for two-phase update
and timed two-phase update as they both require to store both
versions (old and new) of rules until the start of garbage
collection phase. Average rule space requirement for CURE
is 29.954% and 30.348% less than that of two-phase update
and timed two-phase update, respectively. As shown in Figure
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Fig. 6: Average Rule Space Utilization in a Leaf-Spine Topol-
ogy

6, we synthesize that the average rule space utilization is less
in CURE as storage of both version of rules, simultaneously,
is not required.
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Fig. 7: Update Duration and in Average Rule Space Utilization
in a Leaf-Spine Topology

Figure 7 portrays the relation between number of switches,
average rule space utilization, and update duration for two-
phase update and CURE. We see that CURE outperforms the
two-phase update with respect to both performance metrics
— average rule space utilization and update duration.

3) Average Packet Waiting Time: For each of the three
topologies — Sprint, NetRail, and Compuserve, we simulate
five test flows, and calculate the average waiting time for
the incoming packets that are either waiting in the switch
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(a) Sprint Topology
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(b) NetRail Topology
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(c) Compuserve Topology
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(d) Sprint Topology
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(e) NetRail Topology

 0

 5

 10

 15

 20

 25

0.005 0.01 0.015 0.02 0.025

A
ve

ra
ge

 P
ac

ke
t W

ai
tin

g 
T

im
e 

(m
s)

Average Arrival Rate (mpps)

 Flow c1
 Flow c2
 Flow c3

 Flow c4
 Flow c5

(f) Compuserve Topology

Fig. 8: Average Packet Waiting Time
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(a) Sprint Topology
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(b) NetRail Topology
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Fig. 9: Average Packet Inconsistency

queues or are in process. Figure 4 depicts the topologies
and the corresponding test flows. We have estimated delay
of each link based on the distance between the corresponding
nodes. Similar to Ref. [5], we assume 5 microsecond delay
per kilometer.

Figures 8a, 8b, and 8c depict the average packet waiting
time for different average queue size per switch for each of the
test flows in each of the topologies. The average packet arrival
rate per switch is 0.02 mpps. We yield that average packet
waiting time is almost constant for different queue size per
switch for a fixed packet arrival rate. For smaller queue size,
incoming packets wait in more number of neighbor queues.
Whereas, larger switch queues accommodate more number of
incoming packets that are processed sequentially.

Figures 8d, 8e, and 8f depict the average packet waiting
time for different packet arrival rate for each of the test flows
in each of the topologies. The average packet queue size is
0.073 million packets. Average packet waiting time increases
with increasing packet arrival rate.

4) Inconsistent Packet Count: We measure inconsistency as
a percentage of inconsistent packets in the system. Inconsistent

packets are identified based on Definition 7.

Figure 9 compares inconsistency count in CURE with the
timed two-phase update [5] for different average packet arrival
rate. We simulate test flows s1, n1, and c1 in topologies Sprint,
NetRail, and Compuserve, respectively. Average queue size
per switch is 0.073 million packets. The simulation duration
is 5000 milliseconds. In timed two-phase update, inconsistency
count decreases with increasing packet arrival rate. For packet
arrival rate 0.005 mpps, the average inconsistency percentage
for Sprint, NetRail, and Compuserve is 3.937%, 2.172%, and
3.1665%, respectively. For packet arrival rate 0.025 mpps,
the average inconsistency percentage for Sprint, NetRail, and
Compuserve is 1.478%, 0.607%, and 0.638%, respectively.
Whereas, average inconsistency count for CURE is similar
for different packet arrival rate. The average inconsistency
percentage for Sprint, NetRail, and Compuserve is 0.333%,
0.206%, and 0.245%, respectively. Therefore, we yield that
in CURE an initial percentage of incoming packets become
inconsistent due to the ongoing network update and inconsis-
tency count reduces as time elapses after completion of the
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update.

V. CONCLUSION

This work emphasizes reduction of TCAM usage during
SDN update with an aim to increase scalability required for
handling big data. This work modifies the update scheme
of OpenFlow-enabled SDN and proposes a multilevel queue-
based policy for ensuring packet-level consistency. We com-
pare our scheme with other approaches of SDN update to
evaluate its performance. Results clearly display enhanced
scalability and reduced TCAM usage.

The future work will include extension of the proposed
scheme in distributed SDN control plane, where multiple
controllers perform network update at the same time. We
will consider flow-level consistency along with packet-level
consistency.
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