
Cache-Enabled Sensor-Cloud: The Economic
Facet

Aishwariya Chakraborty, Ayan Mondal, and Sudip Misra
Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur

Kharagpur-721302, India
Email: {aishwariya.chakraborty, ayanmondal, smisra}@iitkgp.ac.in

Abstract—In this work, we propose a dynamic cache-based
pricing scheme, named CASH, for service-oriented sensor-
cloud. In sensor-cloud, the Sensor-Cloud Service Provider
(SCSP) provisions Sensors-as-a-Service (Se-aaS) to multiple
end-users based on a pay-per-use model. The service-requests
of the end-users have heterogeneous data-rate requirements.
In the cache-enabled architecture of sensor-cloud, these
service-requests are served by the SCSP using either the
Internal or the External cache, which incurs different costs
to the SCSP. Thereby, the SCSP tries to maximize its own
profit by distributing these service-requests, optimally, among
the caches. Additionally, the SCSP ensures that the end-users
are minimally charged. Existing literature fails to propose
any pricing scheme for service-oriented sensor-cloud, while
considering the cost incurred for data caching. In CASH,
we propose a dynamic pricing model for sensor-cloud using
dynamic coalition formation game with transferable utility.
Using CASH, based on the preference relation of the parti-
tions, we determine the optimal internal cache refresh rate,
while maximizing the coalition value. Through simulation, we
observe that the cost incurred by the SCSP reduces by 34.32-
51.15% and the price paid by the end-users decreases by 9.60-
17.47% as compared to the existing schemes. Additionally,
CASH ensures 9.60-21.85% increase in the profit of the SCSP.

Index Terms—Cache-based Service Oriented Architec-
ture, Dynamic Pricing, Dynamic Coalition Formation Game,
Merge-and-Split Algorithm, Sensor-Cloud

I. INTRODUCTION

Sensor-cloud, an enhancement of traditional wireless
sensor networks (WSNs), is designed by merging WSNs
with the concepts of cloud computing. The main aim of
sensor-cloud is to utilize the concept of virtualization of
cloud for rendering Sensors-as-a-Service (Se-aaS). A cen-
tralized Sensor-Cloud Service Provider (SCSP), possessing
the necessary cloud infrastructure, obtains physical WSNs
on rent from their respective owners and provisions these
resources as units of Se-aaS to the end-users. In lieu of these
services, the SCSP receives revenue from the end-users
as per their usage. Thus, the end-users remain abstracted
from the various hardware-related complexities and their
expenditures are significantly reduced.

In the existing literature, Chatterjee et al. envisioned a
cache-enabled architecture [1] for sensor-cloud. In this ar-
chitecture, the traditional sensor-cloud is equipped with two
caches to store sensed data — Internal Cache (IC), which
is present inside the cloud data-centers, and External Cache

(EC), which is present in the sensor network gateways,
outside the cloud. The cache-based architecture of sensor-
cloud improves the network performance and increases the
efficiency of the system. Therefore, in this work, we explore
the various service-oriented aspects of the cache-enabled
sensor-cloud.

Similar to any cloud-based service-oriented architec-
ture, sensor-cloud also follows a pay-per-use model for
Se-aaS. Thus, pricing is an important aspect in sensor-
cloud. There exist few works in the existing literature
which propose pricing schemes for sensor-cloud, viz., [2],
[3]. However, none of these schemes are suitable for the
cache-enabled architecture of sensor-cloud. Additionally,
the pricing schemes designed for cache-enabled cloud-
based systems and WSN-based systems are not suitable for
sensor-cloud as the architecture of sensor-cloud is based
on heterogeneous SOA (combination of both hardware and
infrastructure-as-a-service) [2]. Hence, there is a need for
a dynamic pricing scheme suitable for the cache-enabled
service-oriented architecture of sensor-cloud.

In this work, we propose a dynamic pricing scheme,
named CASH, for sensor-cloud, while taking into consider-
ation the cost incurred by SCSP for data caching. The pro-
posed scheme leverages the dynamic caching mechanism
of sensor-cloud to ensure maximum profit of the SCSP.
Here, we consider that the internal and external caches have
dynamic refresh rates, which are determined depending on
the service requirements of the end-users at a particular
time. The end-user applications, which require high data-
rate services, are served directly from EC, whereas those
requiring low data-rate are served from IC. The main
contributions of this work are summarized as follows:
1) In this work, a dynamic pricing scheme, CASH, is

proposed for sensor-cloud. Here, the price charged from
the end-users depends on which cache is used to serve
the request.

2) Using a dynamic coalition-formation game-theoretic
approach, the optimal partition of the set of service-
requests among IC and EC is obtained, while taking
into account the data-rate requirements of the end-users
at that time instant.

3) The proposed scheme also takes into account the cost
incurred by the SCSP for serving the end-users from
either of the caches and maximizes the overall profit of

ayan
For Personal Use Only

the SCSP.
4) Performance evaluation of CASH and comparative anal-

ysis of the proposed scheme with existing schemes is
also presented in this work.

II. RELATED WORKS

In past few years, several works have been done which
focus on the various aspects of sensor-cloud. The basic con-
cept, architecture and theoretical modeling of sensor-cloud
was presented by Yuriama et al. [4] and Misra et al. [5]. Sen
et al. [6] developed a prototype of the sensor-cloud middle-
ware, which is capable of provisioning virtual sensors from
physical sensor nodes. Thereafter, the technical aspects of
sensor-cloud were studied by the researchers [?], [7]–[9],
viz., selection of optimal gateway node for transmitting
sensor data to the cloud, virtual sensor composition using
resource-constrained nodes, optimal data-center selection
for Se-aaS provisioning and risk assessment of sensor-
cloud architecture. Few works also focused on the economic
aspects of sensor-cloud. The work by Chatterjee et al. [2]
presented a dynamic pricing scheme for traditional sensor-
cloud, while considering the satisfaction factor of the end-
users, whereas the work by Zhu et al. [3] proposed several
pricing schemes for sensor-cloud, while taking into account
various service parameters. However, these works do not
consider the cost incurred due to caching while designing
the pricing schemes.

On the other hand, in existing literature, several research
works focused on pricing. Awad et al. [10] presented a dy-
namic pricing scheme for device-to-device communication-
enabled HetNets. A double auction-based dynamic pricing
scheme for cloud in the presence of heterogeneous re-
sources was studied by Zhang et al. [11]. Several other
pricing schemes are proposed for efficient utilization of
resources in cloud, viz., [12], [13]. However, these schemes
neither consider caching cost, nor are applicable to sensor-
cloud. Additionally, few cache-based schemes are also
proposed in existing literature. Araldo et al. [14] proposed
a cost-aware caching mechanism for information centric
networks. A contract theory based pricing scheme for
commercial caching systems was proposed by Le et al. in
[15]. Feng et al. [16] explored the optimal placement of
data caches among mobile nodes in mobile cloud environ-
ment. However, since sensor-cloud follows a heterogeneous
service-oriented architecture, none of the proposed schemes
in existing literature are suitable for sensor-cloud. There-
fore, we infer that, there is a need to design dynamic pricing
schemes suitable for cache-enabled sensor-cloud.

III. SYSTEM MODEL

Sensor-cloud encompasses the integration of WSNs and
cloud using the concept of virtualization for provisioning
Se-aaS. In this work, we consider a sensor-cloud having
a single SCSP with multiple registered end-users and sen-
sor owners, as shown in Figure 1. Several heterogeneous
physical sensor nodes, which are owned by the sensor

owners, are deployed over varied geographic regions and
used to serve the end-user service-requests. We consider
that, the sensor-cloud comprises of several base-stations or
gateway nodes, which act as the sink nodes. These nodes
collect the aggregated sensed data from the deployed sensor
nodes and transfer it to the cloud. Each gateway node
has an EC, which gets updated periodically with a time-
interval decided by the SCSP. Additionally, we consider
that, in order to efficiently serve the end-users belonging
to different geographical regions, the sensor-cloud includes
several IC-equipped data-centers. These data-centers are
synchronized together for avoiding any discrepancy.

Fig. 1: Schematic Diagram of Cache-Enabled Sensor-Cloud

We consider that each end-user j ∈ N (t), where N (t) is
the set of registered end-users at time instant t, request the
SCSP to provide sensed data with data-rate rj . Accordingly,
the SCSP allocates a suitable data-center d ∈ D, where D is
the set of data-centers possessed by the SCSP, and gateway
node g ∈ G, where G is the set of gateway nodes registered
with the SCSP. Thereby, we observe that there is a many-
to-many relation between the data-centers and the gateway
nodes, i.e., the internal and external caches. In this scenario,
the optimal cache refresh rate for IC and EC needs to be
decided in order to ensure the profit of the SCSP as well as
QoS for the end-users. Based on the service requirements
of the end-users, the SCSP decides the EC refresh rate RE .
We argue that —

RE = max {rj |∀j ∈ N (t)} (1)

However, the SCSP may vary IC refresh rate RI for
maximizing its own profit. Thereafter, the SCSP serves each
end-user j ∈ N (t) with data-rate requirement rj ≤ RI
from IC. On the other hand, the end-users having data-rate
requirements RI < ∀rj ≤ RE are served directly from EC.

IV. DYNAMIC PRICING FRAMEWORK FOR CASH

A. Pricing Model of CASH

In CASH, we propose that the cache-based pricing model
comprises of two types of pricing policies – base-price and
variable-price. The pricing policies are discussed in the
following sections.

ayan
For Personal Use Only

1) Base-Price Policy: The base-price pB(t) is the def-
inite amount charged at time instant t by the SCSP for
serving each unit of data to the end-users. At time instant t,
it is fixed for both IC and EC and is proportional to the ratio
of the minimum and the maximum data-rate requirements
of the end-users at that time. It is calculated as follows:

pB(t) = η tan−1

(
min {rj |∀j ∈ N (t)}
max {rj |∀j ∈ N (t)}

)
(2)

where η is a constant. In CASH, pB(t) depends on the range
of data-rates for different services served by the SCSP.

2) Variable-Price Policy: The variable-price component
signifies the extra price charged by the SCSP depending
on the service requirements of the end-users. It is different
for IC and EC and denoted as pIV (RI , t) and pEV (RI , t), re-
spectively. In order to define the variable price component,
we define the average normalized data-rate as follows.

Definition 1. We define the average normalized data-rate
ζ(t) as the ratio of the cumulative sum of the normalized
data-rates demanded and the cardinality of the set of
service-requests by the end-users at time instant t.

ζ(t) =

∑|N (t)|
j=1

rj
max{rj |∀j∈N (t)}

|N (t)|

 (3)

From Definition 1, we specify the boundary values of
ζ(t) using Theorem 1.

Theorem 1. Given that the set of service requests is non-
empty, irrespective of the cardinality value of the set of
service requests at time instant t, the average normalized
data-rate ζ(t) always follows the following inequality:

0 < ζ(t) ≤ 1 (4)

Proof: We consider that the set of service requests
N (t) is non-empty, i.e., N (t) 6= {∅}. Therefore, there
exists at least one service-request having data-rate rj , such
that rj > 0. Hence, we infer that —

0 < ζ(t) <∞ (5)

On the other hand, since rj ≤ max {rj |∀j ∈ N (t)}, the
maximum value of the numerator is determined as follows:

|N (t)|∑
j=1

1 = |N (t)| (6)

Thus, from Equation (6), we conclude that ζ(t) ≤ 1.
a) Variable-Price for IC: The variable price

pIV (RI , t) for IC varies linearly with the average normalized
data-rate requirement of the end-user applications at time
instant t. Mathematically,

∂pIV (RI , t)

∂ζ(t)
> 0 (7)

Thereby, pIV (RI , t) is computed as follows:

pIV (RI , t) = αζ(t) (8)

where α is a constant.
b) Variable-Price for EC: We consider that, the

variable-price of EC pEV (RI , t) varies polynomially having
degree two with ζ(t). Mathematically,

∂pEV (RI , t)

∂ζ(t)
> 0 and

∂2pEV (RI , t)

∂ζ(t)2
> 0 (9)

Therefore, pEV (RI , t) is expressed as follows:

pEV (RI , t) = βζ(t)2 + γζ(t) (10)

where β and γ are constants.

B. Cost Model of CASH

Similar to the pricing model, we model the cost incurred
by the SCSP for provisioning Se-aaS, as a combination of
two different cost policies — caching cost and virtualiza-
tion cost, discussed as follows.

1) Caching Cost: Caching cost is the combination of
cache storage and retrieval cost [14]. Cache storage cost
is fixed for each data unit. However, cache retrieval cost
depends on the data-rate requirements of the end-users.
Therefore, we consider cache retrieval cost as caching cost
in the rest of the paper. WI and WE denote the caching
cost for IC and EC, respectively. Intuitively, we get that
WI < WE .

2) Virtualization Cost: Virtualization cost Ψvm is the
cost associated with the instantiation and maintenance
of virtual sensor(s) and virtual machine(s) for serving a
particular end-user application per unit time. We consider
that Ψvm is fixed for all services.

C. Pricing Game Formulation

Based on the aforementioned pricing model, we formu-
late a dynamic coalition-formation cooperative game with
transferable utility [17] to obtain the optimal IC refresh
rate RI such that the incoming service-requests received
by the SCSP are distributed profitably among IC and EC.
Here, the incoming service-requests of the end-users are
considered to be the players of the game. The set of of
players or service-requests is partitioned into two disjoint
coalition sets, NI(t) and NE(t), which are to be served by
the IC and EC, respectively. Subsequently, the SCSP tries
to maximize the cumulative payoff of the utility functions,
i.e., its profit, obtained from the IC and EC coalitions, as
mentioned in Sections IV-C1 and IV-C2.

1) Utility Function for Internal Cache Coalition: The
utility function UI(RI , t) for IC coalition is the cumulative
profit obtained by the SCSP on serving the coalition-set
NI(t) of service-requests from IC at time instant t. It is a
function of optimal IC refresh rate, RI . UI(RI , t) comprises
of two components — price function P Ij (RI , t) and cost
function CIj (RI , t), discussed as follows.

a) Price Function for IC: The price function
P Ij (RI , t) determines the price charged, at time instant
t, by the SCSP for providing a service having data-rate

ayan
For Personal Use Only

requirement rj for unit time. It is expressed as follows:

P Ij (RI , t) =
[
pB(t) + pIV (RI , t)

]
rj , ∀j ∈ NI(t) (11)

b) Cost Function for IC: The cost function CIj (RI , t)
depicts the cost incurred by the SCSP at time instant t for
provisioning a service from IC for unit time to end-user j
having data-rate requirement rj . It is calculated as follows:

CIj (RI , t) = Ψvm + rjWI , ∀j ∈ NI(t) (12)

The utility function UI(RI , t) has a linear relation with
the price and cost functions of the individual service-
requests, and follows the following inequalities:

∂UI(RI , t)

∂P Ij (RI , t)
> 0 and

∂UI(RI , t)

∂CIj (RI , t)
< 0 (13)

Thus, based on Equations (11) and (12), we express the
utility function UI(RI , t) at time instant t as follows:

UI(RI , t) =

|NI(t)|∑
j=1

[
P Ij (RI , t)− CIj (RI , t)

]
(14)

2) Utility Function for External Cache Coalition: We
define the utility function UE(RI , t) for EC coalition at
time instant t as the cumulative profit of the SCSP for serv-
ing the set of service requests NE(t) from EC. UE(RI , t)
also has two components — price function PEj (RI , t) and
cost function CEj (RI , t), which are defined as follows.

a) Price Function for EC: The price charged by the
SCSP per unit time for serving the service-requests of the
end-users from EC determines the price component of the
utility function for EC. PEj (RI , t) is expressed as follows:

PEj (RI , t) =
[
pB(t) + pEV (RI , t)

]
rj , ∀j ∈ NE(t)

(15)
b) Cost Function for EC: The cost incurred by the

SCSP at time instant t for provisioning service having data
rate requirement rj for unit time from the EC is denoted by
the cost function for EC CEj (RI , t). We express CEj (RI , t)
as follows:

CEj (RI , t) = Ψvm + rjWE ∀j ∈ NE(t) (16)

The utility function for EC UE(RI , t) varies linearly with
the individual price and cost functions of each service-
request served from the EC. Thus, we have:

∂UE(RI , t)

∂PEj (RI , t)
> 0 and

∂UE(RI , t)

∂CEj (RI , t)
< 0 (17)

Hence, we express UE(RI , t) mathematically as follows:

UE(RI , t) =

|NE(t)|∑
j=1

[
PEj (RI , t)− CEj (RI , t)

]
(18)

In order to maximize the overall profit, the SCSP needs
to decide the optimal value of RI , while making a trade-off
between the coalition values of the IC and EC coalitions.
Additionally, we consider that in CASH, the coalition value

obtained from IC and EC coalitions need to be maximized.
Therefore, the objective function for CASH is as follows:

argmax
RI

UI(RI , t)UE(RI , t) (19)

Additionally, in CASH, the SCSP needs to satisfy the
following constraints:

min{rj} ≤ RI ≤ max{rj}, ∀j ∈ N (t) (20)
NI(t) ∪NE(t) = N (t) (21)

D. Equilibrium in CASH

In order to reach the Pareto optimal partition in CASH,
the preference relation among the elements of the super set
of all possible partitions of N (t) needs to be evaluated, as
per Definition 2.

Algorithm 1 Cache Refresh Rate Determination Algorithm
INPUTS:
1: N (t) . Set of service-requests received by SCSP at time t
2: rj∀j ∈ N (t) . Date-rate requirement of each service request at time t
3: Ψvm . Virtualization Cost per unit time
4: WI ,WE . Caching cost per unit data for IC and EC
5: η, α, β, γ . Constants decided by SCSP

OUTPUT:
1: RI . Cache refresh rate for IC

PROCEDURE:
1: Calculate pB(t) and ζ(t) using Equations (2) and (3), respectively;
2: Initialize NI(t)← {∅};
3: Initialize NE(t)← N (t);
4: do
5: RI ← min{rj |∀j ∈ NE(t)};
6: NI(t)← {j|∀j ∈ N (t) & ∀rj ≤ RI};
7: for ∀j ∈ NI(t) do
8: Calculate P I

j (RI , t) and CI
j (RI , t) using Equations (11) and (12),

respectively;
9: end for

10: Calculate UI(RI , t) using Equation (14);
11: Set NE(t)← N (t)/NI(t)
12: for ∀j ∈ NE(t) do;
13: Calculate PE

j (RI , t) and CE
j (RI , t) using Equations (15) and (16),

respectively;
14: end for
15: Calculate UE(RI , t) using Equation (18);
16: while (∆UI(RI , t)UE(RI , t) ≥ 0);
17: Return RI ;

Definition 2. Given a set of end-users N (t) and the
corresponding service-request rates {rj |∀j ∈ N (t)}, the
preference relation among two possible partitions A and B
follows ABB, if and only if the following inequality holds:

UI(R
1
I , t)UE(R

1
I , t) ≥ UI(R2

I , t)UE(R
2
I , t) (22)

where A = {AI , AE} and B = {BI , BE}. AI = {rj |∀j ∈
N 1
I (t) and rj ≤ R1

I}, AE = {rj |∀j ∈ N 1
E(t) and rj >

R1
I}, BI = {{rj |∀j ∈ N 2

I (t) and rj ≤ R2
I}, and BE =

{rj |∀j ∈ N 2
E(t) and rj > R2

I}}.

Based on Definition 2, the SCSP obtains the generalized
Nash equilibrium (GNE) given a set of service-request
rates, as defined in Definition 3.

Definition 3. The SCSP ensures GNE of CASH by satisfy-
ing the following inequality:

UI(R
∗
I , t)UE(R

∗
I , t) ≥ UI(RI , t)UE(RI , t) (23)

ayan
For Personal Use Only

where [min{rj |∀j ∈ N (t)} ≤ R∗I , RI ≤ max{rj |∀j ∈
N (t)}], R∗I is the optimum cache refresh rate of IC and RI
represents all possible cache refresh rates, such that (RI 6=
R∗I). Hence, given a set of service-request rates {rj |∀j ∈
N (t)}, CASH ensures that there must be an optimum cache
refresh rate R∗I of IC.

E. Proposed Algorithm

In CASH, the SCSP needs to determine the optimal IC
refresh rate RI in order to ensure profit by serving the
requests of the end-users. To achieve the aforementioned
objective, we use a dynamic coalition formation game
with transferable utility to form two coalitions of service-
requests for IC and EC, dynamically, and maximize the
coalition values. Motivated by the Merge-and-Split Algo-
rithm [17], we determine the optimum IC refresh rate
R∗I based on the preference relation of the collections of
coalitions as discussed in Algorithm 1.

V. PERFORMANCE EVALUATION

A. Simulation Parameters

In this section, we present the performance evaluation
of the proposed scheme, CASH, in the cache-enabled
architecture of sensor-cloud. For simulation, we consider
a sensor-cloud environment in MATLAB consisting of a
single SCSP and variable number of end-users. The number
of end-users requesting the SCSP for Se-aaS at time instant
t is varied from 100 to 10000, as mentioned in the Table I.
Additionally, we also vary the maximum data-rate requested
by the set of end-users from 100 to 1000 packets/sec.
Thereby, we analyze the effect of these parameters on the
percentage of end-users served from IC, total price charged
from the end-users, the total cost incurred by the SCSP and
the profit of the SCSP.

TABLE I: Simulation Parameters

Parameter Value
Simulation Time 30 simulation hours
Number of Internal Cache 1
Number of External Cache 1
Number of service requests 100, 1000, 10000
Maximum requested data-rate 100, 250, 500, 750, 1000 packets/sec
Cost for single VM maintenance 100 units per unit simulation time
Caching cost for IC 10 units
Caching cost for EC 100 units

B. Benchmarks

We compare the proposed scheme, CASH, with two
benchmark schemes — DADCM [1] and ED. In DADCM,
Chatterjee et al. proposed a dynamic and adaptive caching
scheme for sensor-cloud. The authors considered that the
refresh rate for EC is dependent on the rate of change of the
environment and that for IC varies with the rate of change
of EC. Thus, DADCM is mostly suitable for event-driven
applications. In case of highly dynamic environment, EC
and IC are updated at almost same rate. Therefore, DADCM
serves majority of the service-requests from EC and the

corresponding end-users are charged according to the EC
pricing. On the other hand, ED is a static scheme which
considers equal division of the service requests among IC
and EC. It is suitable for both event-driven and periodic
applications. In ED, half of the end-users are charged based
on IC pricing and the other half based on EC pricing.

C. Performance Metrics

In this work, we consider the following metrics to
evaluate the performance of the proposed scheme, CASH.

Cost incurred by SCSP: We evaluate the total cost
incurred by the SCSP for provisioning hardware and com-
putational resources to the end-users for unit service-time.
Since data is retrieved more frequently from EC than from
IC, the cost incurred by the SCSP to provision services
from EC is higher than that in case of IC.

Price paid by end-users: The price per unit service-time,
which is to be paid by the end-users to the SCSP for Se-aaS,
depends on the cost incurred by the SCSP to provision the
services requested by the end-users. Therefore, as evident
from the Equations (11) and (15), the end-users served
from EC have to pay higher price per unit service-time
as compared to those served from IC.

Profit of SCSP: The difference of the price charged by
the SCSP from its end-users and the actual cost incurred
by the SCSP for provisioning Se-aaS to the end-users is
the profit of the SCSP.

 60

 65

 70

 75

 80

100 250 500 750 1000

A
pp

lic
at

io
ns

 s
er

ve
d

by

 I
nt

er
na

l C
ac

he
 (

%
)

Maximum Data Rate (packets/sec)

 Rmax = 100
 Rmax = 500

 Rmax = 1000

 Rmax = 5000
 Rmax = 10000

Fig. 2: Percentage of end-users served using Internal Cache

D. Results and Discussions

For simulation, we consider that at time instant t, SCSP
receives heterogeneous service-requests having varied data-
rate requirements from multiple end-users. We assume that
the regions of interest have a highly dynamic environment
and the SCSP is capable of serving every incoming service-
request either using IC or EC. Therefore, in case of
DADCM, every service-request is served from the EC,
whereas, in case of ED, the percentage of users served
from either of the caches remains fixed at 50%. However,
we observe that, using CASH, the percentage of end-users
served using IC (and hence, EC) varies with the overall
distribution of the service-request rates. Figure 2 depicts
that 70.5-72.15% of incoming service-requests at each time
instant are served from IC using CASH.

ayan
For Personal Use Only

 20

 30

 40

 50

 60

100 250 500 750 1000

C
os

t i
nc

ur
re

d
by

 S
C

SP
 (

10
6)

Maximum Data Rate (packets/sec)

 CASH DADCM ED

(a) # Service Requests = 1000

 100

 200

 300

 400

 500

 600

100 250 500 750 1000

C
os

t i
nc

ur
re

d
by

 S
C

SP
 (

10
6)

Maximum Data Rate (packets/sec)

 CASH DADCM ED

(b) # Service Requests = 10000

Fig. 3: Cost incurred by the SCSP

 50

 60

 70

 80

 90

 100

100 250 500 750 1000

Pr
ic

e
pa

id
 b

y
en

d-
us

er
s

(1
06)

Maximum Data Rate (packets/sec)

 CASH DADCM ED

(a) # Service Requests = 1000

 750

 800

 850

 900

 950

 1000

100 250 500 750 1000
Pr

ic
e

pa
id

 b
y

en
d-

us
er

s
(1

06)

Maximum Data Rate (packets/sec)

 CASH DADCM ED

(b) # Service Requests = 10000

Fig. 4: Price paid by the end-users

 20

 30

 40

 50

 60

 70

100 250 500 750 1000

Pr
of

it
of

 S
C

SP
 (

10
6)

Maximum Data Rate (packets/sec)

 CASH DADCM ED

(a) # Service Requests = 1000

 200

 300

 400

 500

 600

100 250 500 750 1000

Pr
of

it
of

 S
C

SP
 (

10
6)

Maximum Data Rate (packets/sec)

 CASH DADCM ED

(b) # Service Requests = 10000

Fig. 5: Profit of the SCSP

From Figure 3, we observe that the cost incurred by the
SCSP to serve the requests of the end-users is improved
by 49.95-51.15% using CASH than using DADCM. This
is because, in a highly dynamic environment, DADCM
serves majority of requests from EC, resulting in increased
service provisioning cost. On the other hand, using CASH,
the cost incurred by SCSP decreases by 32.97-34.32%
compared to using ED. Additionally, Figure 4 depicts that
using CASH, the price charged by the SCSP from the
end-users decreases by 16.71-17.47% and 9.08-9.6%, than
using DADCM and ED, respectively. This can be attributed
to the fact that, among the three schemes, CASH ensures
optimal distribution of the service-requests among IC and
EC. Moreover, from Figure 5, we infer that the profit
earned by the SCSP also increases by 20.83-21.85% and
9.43−9.60% using CASH, as compared to using DADCM
and ED, respectively. Hence, we conclude that CASH is
economically more preferable to the SCSP as well as the
end-users than the other two existing schemes.

VI. CONCLUSION

In this work, a dynamic pricing scheme, named CASH,
for cache-enabled sensor-cloud using dynamic coalition for-
mation game is presented. Using CASH, the SCSP ensures
its maximum profit, while serving the end-user service-
requests. Additionally, the proposed scheme, CASH, adds
dynamism to the pay-per-use model of sensor-cloud, while
making Se-aaS more economic for the end-users. Simu-
lation results depict that the profit of the SCSP increases
and the price paid by the end-users decreases using the
proposed dynamic pricing scheme as compared to the
existing schemes.

This work can be extended by exploring Se-aaS pricing
scheme in the presence of heterogeneous virtual sensors.
Additionally, as a continuation of this work, the variable

maintenance cost incurred by the SCSP in the presence of
heterogeneous physical sensor nodes can also be incorpo-
rated.

REFERENCES

[1] S. Chatterjee and S. Misra, “Dynamic and Adaptive Data Caching
Mechanism for Virtualization within Sensor-Cloud,” in Proc. of IEEE
Int. Conf. on ANTS, Dec 2014, pp. 1–6.

[2] S. Chatterjee, R. Ladia, and S. Misra, “Dynamic Optimal Pricing
for Heterogeneous Service-Oriented Architecture of Sensor-cloud
Infrastructure,” IEEE Trans. on Serv. Comp., vol. 10, no. 2, pp. 203–
216, 2017.

[3] C. Zhu, X. Li, V. C. M. Leung, L. T. Yang, E. C. H. Ngai, and
L. Shu, “Towards Pricing for Sensor-Cloud,” IEEE Trans. on Cloud
Comp., 2017, DOI: 10.1109/TCC.2017.2649525.

[4] M. Yuriyama, T. Kushida, and M. Itakura, “A New Model of
Accelerating Service Innovation with Sensor-Cloud Infrastructure,”
in Annual SRII Global Conf., Mar 2011, pp. 308–314.

[5] S. Misra, S. Chatterjee, and M. S. Obaidat, “On Theoretical Mod-
eling of Sensor Cloud: A Paradigm Shift From Wireless Sensor
Network,” IEEE Syst. J., vol. 11, no. 2, pp. 1084–1093, Dec 2017.

[6] A. Sen, V. P. Modekurthy, R. Dalvi, and S. Madria, “A Sensor Cloud
Test-bed For Multi-model and Multi-user Sensor Applications,” in
Proc. of IEEE WCNC, Apr 2016, pp. 1–7.

[7] T. Ojha, S. Bera, S. Misra, and N. S. Raghuwanshi, “Dynamic Duty
Scheduling for Green Sensor-Cloud Applications,” in Proc. of IEEE
CloudCom, Dec 2014, pp. 841–846.

[8] S. Chatterjee and S. Misra, “Optimal Composition of a Virtual
Sensor for Efficient Virtualization within Sensor-Cloud,” in Proc.
of IEEE ICC, Jun 2015, pp. 448–453.

[9] S. Chatterjee, S. Misra, and S. Khan, “Optimal Data Center Schedul-
ing for Quality of Service Management in Sensor-cloud,” IEEE
Trans. on Cloud Comp., 2015, DOI: 10.1109/TCC.2015.2487973 .

[10] A. Awad, A. Mohamed, C. F. Chiasserini, and T. Elfouly, “Network
Association with Dynamic Pricing over D2D-Enabled Heteroge-
neous Networks,” in Proc. of IEEE WCNC, Mar 2017, pp. 1–6.

[11] Y. Zhang, K. Xu, X. Shi, H. Wang, J. Liu, and Y. Wang, “Continuous
double auction for cloud market: Pricing and bidding analysis,” in
Proc. of IEEE WCNC, Apr 2016, pp. 1–6.

[12] D. M. Divakaran and M. Gurusamy, “Towards Flexible Guarantees
in Clouds: Adaptive Bandwidth Allocation and Pricing,” IEEE Trans.
on Para. and Dist. Syst., vol. 26, no. 6, pp. 1754–1764, Jun 2015.

ayan
For Personal Use Only

[13] Y. Chi, X. Li, X. Wang, V. C. M. Leung, and A. Shami, “A Fairness-
Aware Pricing Methodology for Revenue Enhancement in Service
Cloud Infrastructure,” IEEE Syst. J., vol. 11, no. 2, pp. 1006–1017,
Jun 2017.

[14] A. Araldo, M. Mangili, F. Martignon, and D. Rossi, “Cost-aware
caching: Optimizing cache provisioning and object placement in
ICN,” in Proc. of IEEE GLOBECOM, Dec 2014, pp. 1108–1113.

[15] T. H. T. Le, N. H. Tran, P. L. Vo, Z. Han, M. Bennis, and C. S.
Hong, “Contract-Based Cache Partitioning and Pricing Mechanism
in Wireless Network Slicing,” in Proc. of IEEE GLOBECOM, Dec
2017, pp. 1–6.

[16] Y. Feng, R. Stoleru, C. A. Chen, and G. G. Xie, “A Routing-
Protocol-Independent Caching Framework for Mobile Clouds,” IEEE
Transactions on Emerging Topics in Computing, vol. 5, no. 3, pp.
353–366, July 2017.

[17] Z. Han, D. Niyato, W. Saad, T. Baar, and A. Hjrungnes, Game
Theory in Wireless and Communication Networks: Theory, Models,
and Applications, 1st ed. NY, USA: Cambridge University Press,
2012.

ayan
For Personal Use Only

	Introduction
	Related Works
	System Model
	Dynamic Pricing Framework for CASH
	Pricing Model of CASH
	Base-Price Policy
	Variable-Price Policy

	Cost Model of CASH
	Caching Cost
	Virtualization Cost

	Pricing Game Formulation
	Utility Function for Internal Cache Coalition
	Utility Function for External Cache Coalition

	Equilibrium in CASH
	Proposed Algorithm

	Performance Evaluation
	Simulation Parameters
	Benchmarks
	Performance Metrics
	Results and Discussions

	Conclusion
	References

