Abstract—This paper presents a tensor-based rule-space management (TERM) system for improving the available capacity of switches in software defined networking (SDN). Limited storage capacity of switches is a key challenge in SDN as the switches use ternary content addressable memories having very low capacity. Low rule storage capacity eventually leads to the high number of Packet-In messages and control plane overloading. The challenge is to design a dynamic scheme to store a large number of heterogeneous flow-rules in SDN switches and reduce the number of Packet-In messages. To address this problem, we apply the concept of tensor decomposition in order to aggregate flow-rules. In addition, we employ a rule caching mechanism for better throughput. Simulation results show the efficiency of TERM in terms of reduction in the number of Packet-In messages. TERM reduces the Packet-In message count by 57.78% than the flow aggregation approach proposed in the existing literature.

Index Terms—Caching, flow-rule, software defined networking (SDN), ternary content addressable memories (TCAM), tensor decomposition.

I. INTRODUCTION

SOFTWARE defined networking (SDN) provides a global view of the network by separating the control plane from the data plane [1]. This simplifies the task of network administrators and makes SDN suitable for large-scale networks [2]. In particular, researchers are proposing SDN-based architectures for Internet of Things (IoT) applications [3]. These applications involve the management of millions of heterogeneous flows per second [4]. However, the exigency of scalable rule-space in SDN switches is evident [5]. The limited rule-space capacity increases the event of flow-table miss and causes the switch to send Packet-In messages to the controller for the installation of new rules. A Packet-In message contains the header of a captured packet, which has no matching entry in the flow-table. The controller formulates new flow-rule based on the contents of the Packet-In message and installs the rule at the corresponding switch. For IoT applications, the number of Packet-In messages can be a bottleneck for the control plane. Therefore, the main objective of the proposed work is to enable the switches to store larger number of rules and decrease the number of Packet-In messages.

A. Motivation

State-of-the-art SDN switches store rules in ternary content addressable memories (TCAMs). TCAM has limited capacity constraint due to its high manufacturing cost [6]. According to the latest OpenFlow protocol version (v1.5.1) [7], each flow-rule contains 45 match fields. Although most switch manufacturers still use OpenFlow version 1.0, which has 20 match fields, TCAM in these switches can store only up to 8000 entries [5]. This number reduces when new OpenFlow switches with higher protocol versions are deployed. Additionally, match fields such as the source and destination port numbers are specified as ranges in a typical packet classifier. Multiple flow entries are generated for an equivalent range rule in a typical packet classifier. In addition, an analysis performed on access control list (ACL) databases of 1998 and 2004 reports that the volume of range rules increased from 1.3% to 13.3% [8]. On the other hand, a large number of applications today provide services to billions of users and this number is predicted to increase rapidly in the future [9]. For example, to serve the users of city similar to New South Wales, an application should be capable of handling 70 million flows per second [4]. This high volume of flows causes rapid and frequent updates in SDN switches, while generating high number of Packet-In messages [10]. Therefore, there is a need for rule-space management in large-scale networks in order to store this high volume of flow-rules.

The existing literature considers three basic approaches—flow-table aggregation [11], flow-rule partitioning [12], and flow aggregation [13] for handling the capacity constraint of SDN switches. However, the lack of uniformity in handling flow-rules, which are generated from heterogeneous IoT applications, is evident in these approaches. Additionally, these approaches are not flexible enough to provide rule-space and reduce table miss according to the network demand. In this paper, we propose a scheme, named TERM, to increase the scalability of SDN switches and reduce the Packet-In message count.

B. Contribution

The primary contributions of this paper are listed as follows. 1) We propose a scheme that is capable of aggregating heterogeneous flow-rules having no common prefix.

Manuscript received August 1, 2018; revised September 12, 2018; accepted October 28, 2018. (Corresponding author: Sudip Misra.)
2) We envision a tensor-based algorithm to compress rules in each switch.
3) Extensive simulation results demonstrate that TERM significantly reduces the average number of Packet-In messages and increases free space for storing rules.

C. Paper Organization

The remainder of this paper is organized as follows. Section II discusses the relevant research work. In Section III, we describe TERM in detail. Section IV presents the experimental results and comparative studies with other existing approaches. Finally, we conclude the work in Section V.

II. RELATED WORK

In this section, we review prior works related to flow-table aggregation, flow-rule partitioning and flow aggregation. We also review the existing literature on tensor and singular value decomposition (SVD) used in this paper.

Earlier, table aggregation approaches considered only prefix entries, where do not care (\*) do not appear in the beginning of the ternary strings. Applegate et al. [14] proposed a prefix-based minimization technique for ACLs, which have entries similar to TCAMs. Meiners et al. [11] proposed bit weaving, which partitions the total rule-set and permutes the bit positions for each of the partitions to transform all nonprefix entries into prefix entries. Finally, these transformed partitions are merged together, after which each entry is repermuted to their original bit order. However, one of the major limitations of bit weaving is high computation time for larger partition size. This is even worse in networks where data changes frequently, because bit weaving recomputes the whole rule-set for each rule update.

Other related works concerns the approach of partitioning the flow-rules. Kanizo et al. [12] presented a decomposition technique, which partitions a flow-table into subtables and distributes the subtables across the network. They proposed two techniques—pivot bit decomposition (PBD) and cut-based decomposition (CBD). PBD decomposes the table into subtables by selecting a pivot bit/column. However, PBD increases the total number of rules, because two separate rules are generated for each do not care (\*) pivot bits. On the other hand, CBD represents the set of rules by a dependency graph. Moshref et al. [15] proposed a virtual Cloud Rule Information Base (vCRIB), which partitions the overlapping rules by splitting them. Consequently, the overall number of rules increases.

Flow aggregation approaches minimize the total number of flows in order to reduce the number of flow-rules. Kosugiyma et al. [13] proposed an approach that considers end-to-end delay as a parameter of flow aggregation. However, the authors considered delay sensitive flows only.

A tensor [16] is a high-dimensional matrix which represents heterogeneous data. Therefore, some of the existing works use tensors for handling large-scale data [17]. Liavas et al. [18] proposed a tensor factorization technique for parallel processing of large-scale data. Motivated by this paper, we use tensors for representing large flow-tables. We consider a three-order tensor, where the orders denote a single flow-rule, components of a flow-rule (match fields, priority, and actions), and the total number of flow-rules, respectively. Henry et al. [19] presented a SVD technique to extract useful data from a matrix. Schifanella et al. [20] implemented an extension to the SVD technique, named TUCKER decomposition [21]. Acar and Yener [22] proposed higher-order SVD (HOSVD), which is a generalization of the TUCKER decomposition. HOSVD imposes orthogonality constraint on component matrices. We use a technique, which is similar to HOSVD, to aggregate the flow-rules by extracting core data from a single dimension that represents the number of entries in a flow-table.

Synthesis: Therefore, we infer that there exist a few works for handling the capacity constraint of flow-tables. However, most of these works do not consider dynamic network traffic, which is usual for IoT applications. The proposed scheme, TERM, is distinctive in this respect, because it can extract core data from the entire rule-space, irrespective of the original number of rules. The volume of core data does not depend on the original number of rules.

III. TERM: THE PROPOSED SCHEME

In this section, we discuss the network model considered for the proposed scheme, TERM. In addition, we describe the proposed tensor-based approach for managing the rule-space of the switches.

A. Network Model

Fig. 1 depicts the network model considered for TERM. The set of switches in the data plane is denoted $S = \{s_1, s_2, \ldots, s_D\}$. In the control plane, there exist multiple subcontrollers connected with a controller $c$. The set of subcontrollers is denoted $C_{\text{sub}} = \{c_{1\text{sub}}, c_{2\text{sub}}, \ldots, c_{M\text{sub}}\}$. The subcontrollers are placed using existing controller placement
algorithms [4]. All the subcontrollers are connected to c. Each switch $s_j$ is connected to a subcontroller. Therefore, the assignment between switches and subcontrollers is defined as a $D \times M$ binary matrix $L$. Each element of $L$ is expressed as
\[ l_{ij} = \begin{cases} 1, & \text{if } s_i \text{ is connected to } c_j \text{sub} \\ 0, & \text{otherwise}. \end{cases} \]

**Definition 1** (Region): A region $r_j$ is defined as
\[ r_j = \bigcup_i s_i, \forall l_{ij} = 1. \]

The set of rules in switch $s_i$ at time $t$ is denoted
\[ R^i(t) = R^i_{c}(t) \cup R^i_{u}(t) \cup R^i_{t}(t) \]
where $R^i_{c}(t)$ is the set of cached rules, $R^i_{u}(t)$ is the set of aggregated rules, and $R^i_{t}(t)$ denotes the set of uncompressed rules in switch $s_i$ at time $t$.

A switch $s_i$ generates $p_i(t)$ number of Packet-In messages at time $t$. Packet-In messages are generated whenever incoming packets fail to match with any of the flow-rules in $R^i(t)$.

The objective of this paper is to minimize the number of Packet-In messages by maximizing the total number of rules stored in each switch. Mathematically,
\[ \min \sum_{i=1}^{[S]} p_i(t) \]
subject to
\[ |R^i_{c}(t)| < N_i, \forall s_i \in S \]
\[ |R^i_{u}(t)| < N_i, \forall s_i \in S \]
where $N_i$ denotes the storage in a SDN switch $s_i$ is capable of storing $N_i$ entries. Equations (5) and (6) express that the number of cached rules and the number of uncompressed rules are less than the storage capacity of the TCAM.

**B. Tensor-Based Approach for Rule-Space Management**

In this section, we describe the proposed scheme, TERM, which includes three modules—rule aggregation, rule reconstruction, and rule caching. Rule aggregation and rule reconstruction procedures of a region $r_j$ are performed by $c^\text{sub}_j$. The rule aggregation module compresses the flow-rules in each switch with a tensor-based approach to increase the available capacity of the flow-tables. The rule reconstruction module reconstructs the compressed rules in a switch, whenever an incoming packet fails to match the uncompressed rules. Additionally, each switch has a rule caching module that caches the most frequently used rules. This avoids the reconstruction of rules every time a packet reaches a switch.

Therefore, for an incoming packet, a switch first checks for a rule match in the cached rules, and then the uncompressed flow-rules in each of the flow-tables. If no match is found, it informs the subcontroller that the reconstruction of compressed rules is required. The subcontroller reconstructs the compressed rules and checks for a possible rule match. If a match is found in multiple rules, the higher priority rule is selected. If no match is found even after checking the compressed rules, the packet is redirected to $c$, which generates the new rule as per existing OpenFlow policy [7].

1) **Rule Aggregation**: The rule aggregation module includes three submodules—rule restructuring, tensorization, and reduction.

a) **Rule restructuring**: Rule restructuring converts the ternary string of each rule into integer value. We consider a 4-bit ternary value for each match field and 4-bit binary value for the action field. Each ternary string of length 2 is transformed to an integer digit based on the transformation rules presented in Table I.

Example 1: Consider a ternary string of two match fields and one action field $\{1101\}$. Therefore, after transformation the resulting integer string will be $35, 82, 97$.

b) **Tensorization**: In this paper, we use tensor to formalize the flow-tables in SDN switches. We transform each modified rule-set into a three-order tensor, as follows:
\[ T \in R^3 \times N_f \times N_t \]
where $N_f$ denotes the number of fields in a TCAM entry, which includes the priority value, match fields, and action value. $N_f$ depends on the OpenFlow protocol version. $N_t$ denotes the total number of uncompressed rules in the switch.

c) **Reduction**: Algorithm 1 transforms $T$ to a compressed tensor $C \in R^3 \times N_f \times N_t$, where $N_f < N_f$. $N_t$ is termed as the reduction factor (RF). The value of RF at time $t$ is selected as
\[ \text{RF}(t) = N_c = N_f + \left(\frac{(Q_{\text{max}} - Q_{\text{current}})}{Q_{\text{max}}} \times 100\right) \]
where $Q_{\text{max}}$ and $Q_{\text{current}}$ denote the queue length and the number of packets queued at the switch, respectively. When a switch has high number of queued packets, a low $N_c$ enables the switch to store more number of uncompressed rules. Therefore, the reduction coefficient is expressed as
\[ q = \frac{N_c - N_e}{N_t} \times 100\% \]

Algorithm 1 reduces the dimensions of the initial rule tensor $T$ and transforms it to the reduced tensor $C$. In Theorem 1, we discuss that this reduction permits a switch to store more rules, than in the case of a traditional SDN architecture. As we aim to reduce the rule count, we consider the mode-3 unfolded matrix to perform the tensor decomposition method. Mode-3 matrix of tensor $T$ is computed in Line 1 using the procedure of tensor unfolding or matricization [16]. Fig. 2 shows three unfolded
and $TT$ and $TT$ are the square roots of the common eigenvalues of matrices of an initial rule tensor $T$. Fig. 2. Matricization of initial rule tensor.

**Algorithm 1: Rule Aggregation Algorithm.**

**INPUT:**
1: $T \in R^{1 \times 4 \times 8}$ $\triangleright$ Initial rule tensor

**OUTPUT:**
1: $key = \{ C \in R^{1 \times 4 \times N_r}, U_k \}$ $\triangleright$ Core data set

**PROCEDURE:**
1: Compute $T(3)$ from tensor $T$;
2: $[USV] = SVD(T(3))$; $\triangleright$ Singular value decomposition of mode-3 matrix
3: Truncate $U_k \in R^{N_f \times N_r}$ from $U$;
4: $C = T \times_3 U_k^T$;
5: $key \leftarrow \{ C, U_k \}$;
6: return $key$;

matrices of an initial rule tensor $T \in R^{1 \times 4 \times 8}$, which represents eight flow-rules each with one priority value and two match fields and action value. The corresponding unfolded matrices are $T(1) \in R^{1 \times 32}$, $T(2) \in R^{1 \times 8}$, and $T(3) \in R^{8 \times 4}$.

A tensor element $T(a_1, a_2, \ldots, a_N)$ for a tensor $T \in R^{l_1 \times l_2 \times \ldots \times l_N}$ corresponds to the matrix element $T(p)(a_p, b)$, where

$$b = 1 + \sum_{k=1, k \neq p}^{N} (a_k - 1) \prod_{m=1, m \neq p}^{k-1} I_m.$$ (10)

In Line 2, the unfolded matrix $T(3)$ is decomposed using the SVD technique. SVD factorizes matrix $T(3)$ into the form

$$T(3) = USV^T.$$ (11)

where $U$ and $V$ are the left and right unitary orthogonal matrices, respectively; $S$ is a diagonal matrix, whose elements are singular values of $T(3)$ [19]. Singular values of matrix $T(3)$ are the square roots of the common eigenvalues of $T(3)T(3)^T$ and $T(3)^T T(3)$. The matrices $U$ and $V$ consist of column vectors, which are transposed eigenvectors of matrices $T(3)T(3)^T$ and $T(3)^T T(3)$, respectively.

The left singular matrix $U$ is truncated in Line 3, which is given by

$$U_k \in R^{N_f \times N_r}.$$ (12)

The matrix $U_k$ is needed to be stored for rule reconstruction. We store this matrix $U_k$ in parts in the subcontrollers based on their available memory.

Line 4 generates the compressed tensor $C$ by computing the mode-3 product of tensor $T$ with transpose of matrix $U_k$, which can be expressed with unfolded matrices as

$$C = (T \times_3 U_k^T) \Leftrightarrow C(3) = U_k^T \times T(3).$$ (13)

Space complexity of Algorithm 1 is $O(N_f^2 + O(N_r(N_r + N_f))$, which decomposes to $O(N_f^2)$ as $N_i$ is greater than both $N_f$ and $N_r$. The time complexity of performing SVD on the unfolded matrix $T(3)$ in Line 2 is $O(\min\{N_f^2 N_r, N_f N_r^2\})$ [23]. The time complexity of computing mode-3 product in Line 3 is $O(N_i N_f N_r)$. Therefore, time complexity of Algorithm 1 is $O(\min\{N_f^2 N_f, N_f N_r^2\}) + O(N_i N_f N_r)$. Fig. 3 describes the computation of mode-3 product for an order-3 tensor $T \in R^{1 \times 4 \times 8}$ multiplied by transpose of truncated orthogonal matrix $U_k \in R^{8 \times 4}$.

The rule aggregation procedure is triggered by the subcontroller if free memory of a switch $s_i$ drops below a certain threshold value th. This limit th is predefined based on nature of the applications. During an aggregation procedure at time $t$, all the rules in $R(t)_i$ are aggregated to form a new set of aggregated rules.

**Theorem 1:** The maximum number of rules stored in the TERMDN architecture is greater than the maximum number of rules stored in a traditional SDN architecture with $D$ OpenFlow switches, where $D \geq 1$, $N > N_f$; $N$ is the storage capacity of each OpenFlow switch in the traditional SDN architecture in terms of the number of entries, and $N_f$ is the number of fields in a TCAM entry.

**Proof:** The maximum number of entries stored in a traditional SDN architecture with $D$ switches, each having a TCAM

![Fig. 2. Matricization of initial rule tensor.](image1)

![Fig. 3. Mode-3 product of the initial rule tensor.](image2)
capable of storing \( N \) entries, is given by
\[
\text{Max}_1 = D \times N.  
\]  
(14)

We denote the maximum number of entries stored in the TERM SDN architecture as
\[
\text{Max}_m = D \times \alpha  
\]  
(15)

where \( \alpha \) is the storage capacity of each switch in terms of the number of entries of the modified architecture. Therefore, we need to prove that
\[
\text{Max}_m > \text{Max}_1, \text{ where } D \geq 1.  
\]  
(16)

Let \( T \in R^{l \times N_t \times N_f} \) be the tensor representing rules of a switch with \( N_t \) uncompressed entries, where each entry has \( N_f \) fields, and \( 0 < N_t < N \). The corresponding switch contains a total \( (N - N_t) \) entries comprising of cached entries and the aggregated entries generated from the previous aggregation phase.

The p-mode product of a tensor is the basic flow-rule reduction operation for reducing tensor dimensions. To reduce the dimension of the nth order of a tensor \( T \) from \( I_n \) to \( I_p \) \((I_n > I_p)\), we need to compute \( n \)-mode product of tensor \( T \) by a truncated left singular vector matrix \( U \in R^{I_p \times I_n} \).

The aim of our rule aggregation approach is to reduce the 3rd order of tensor \( T \in R^{l \times N_t \times N_f} \) from \( N_t \) to \( N_r \), where \( N_r < N_t \), to allow storage of larger flow-tables. Therefore, the compressed tensor \( C \in R^{l \times N_r \times N_f} \) is expressed as
\[
C = T \times_3 U_3^T  
\]  
(17)

where \( U_3 \) is obtained by retaining the left \( N_r \) unitary orthogonal vectors from the left singular vector matrix generated from singular value decomposition of mode-3 matrix of tensor \( T \). Fig. 3 illustrates the operation of computing compressed tensor \( C \) from an initial tensor \( T \). From experimental results, we observe that the minimum value for \( N_r \) is \( N_f \) for exact reconstruction of flow-rules. Therefore, the maximum percentage of rule reduction for a switch is \( \frac{N - N_r}{N} \times 100 \% \). \( N_r \) can be chosen dynamically depending on the application type. If the application is latency sensitive, then the optimal value of \( N_r \) should be chosen, considering the processing time of both rule reduction and reconstruction for approximate rule-set size.

After rule aggregation in each switch, an extra space is available for storing maximum \((N_t - N_f)\) entries. So, \( L \) switches can support upto \((N_t - N_f) \times D)\) extra entries. So, \( \text{Max}_m \) can be expressed as
\[
\text{Max}_m = D \times (N + (N_t - N_f))  
\]  
(18)

where the storage capacity of each switch in TERM is \( \alpha = (N + (N_t - N_f)) \). The term \((N + (N_t - N_f)) > 0\), as \( 0 < N_f \leq 45, L > 0, N_t > 0, \) and \( N > N_f \) [7]. Hence, the statement of (16) is true.

2) Rule Reconstruction: The corresponding subcontroller reconstructs the aggregated rules of the switch to verify whether there is a match. Rules in the switch do not change during this process. The reconstructed rules are stored in the subcontroller. After the subcontroller completes the verification process for a possible rule match, it releases the memory used for rule reconstruction.

Change in network policies or topology triggers rule update or addition of new rules. To handle these changes, the aggregated rules of selected switches are reconstructed and then aggregated again after incorporating the changes.

a) Approximate rule tensor generation: For rule reconstruction, initially, we generate an approximate rule tensor \( T_A \in R^{l \times N_t \times N_f} \), by computing the mode-3 product of compressed tensor \( C \in R^{l \times N_t \times N_f} \) with truncated unitary orthogonal matrix \( U_k \) computed using [see (12)] and stored. This process is expressed as
\[
T_A = C \times_3 U_k.  
\]  
(19)

Equation (19) can also be expressed as
\[
T_A(1,:) = U_k \times (C(3,:))  
\]  
(20)

where \( T_A(1,:) \) and \( C(3,:) \) are the mode-3 unfolded matrices of approximate rule and compressed rule tensors, respectively [16].

The space complexity of the rule reconstruction procedure is \( O(N_t(N_r + N_f)) \). The time complexity of the rule reconstruction procedure is \( O(N_t N_r N_f) \).

The absolute error of approximation between initial rule tensor \( T \) and approximated rule tensor \( T_A \) is measured as
\[
\epsilon = \| T - T_A \|  
\]  
(21)

where \( \| X \| \) denotes the norm of a tensor \( X \) [16]. This error is introduced due to approximation of the floating-point values in the truncated unitary orthogonal matrix \( U_k \). From experimental results, it is observed that \( \epsilon = 0 \) for \( N_r = [N_f, N_t] \).

The size of the matrix \( U_k \) depends on RF which we calculate using (8). Hence, the rule reconstruction time is high for a high value of RF due to the computation of mode-3 product in (19).

b) Rule recovery: After approximate rule tensor is generated, exact rule entries are recovered. Each mode-2 \( \text{fiber} \) [16] of tensor \( T_A \) corresponds to one row of flow-table. At this stage, the action value and all the match fields of the flow-table entries are in integer format. Using transformation logic described in Table I, we transform each entry of the flow-table back to ternary string. Fig. 4 shows the process of rule recovery.

3) Rule Caching: Each switch \( s_i \) caches the most frequently used rules. Incoming packets, which match with the cached rules, directly follow the actions mentioned in the matched rule. For “cache miss,” the packets first search for a match in \( R_i(t) \). If no match is found, then the corresponding subcontroller reconstructs the aggregated rules and checks for a match.

We used the least recently used cache algorithm. In the OpenFlow protocol version (v1.5.1) [7], each flow-table entry contains a counters field, which is updated when incoming packets are matched with the corresponding flow-rule. Investigation of this field allows us to discard the least recently used rules and select the frequently used ones as the potential caching candidates. The discarded rules are added to the \( R_i(t) \) set. If a rule in the
aggregated rule-set \( R_{ia}(t) \) qualifies as a potential caching candidate, then that rule is added to set \( R_{ic}(t) \) with a flag indicating that the rule is also available in the aggregated rule-set \( R_{ia}(t) \). Therefore, when the rule is no longer needed to be cached, it can be simply deleted from set \( R_{ic}(t) \) without adding it to set \( R_{iu}(t) \).

IV. PERFORMANCE EVALUATION

In this section, we evaluate the efficiency of TERM, while comparing with traditional OpenFlow-based approach, flow-table partitioning approach—Pallet [12], and flow aggregation approach (FAA) [13]. We implement all the algorithms in MATLAB and consider Sprint topology [24]. We generate random flow-table entries, each with a priority value, a counter value, 45 match fields, and an action value. The performance of TERM is evaluated based on throughput, average packet waiting time, free rule-space, Packet-In message count, and rule aggregation and reconstruction time.

A. Simulation Parameters

The simulation parameters are depicted in Table II. The total number of switches is 11. The maximum number of flow-entries stored in a switch is 8000 [5]. The average queue size per switch is set as 0.07 million packets [10]. In addition, the rule matching time is fixed to 20 \( \mu \)s [25]. We consider 5 \( \mu \)s transmission delay per kilometer distance [26].

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network topology</td>
<td>Sprint [24]</td>
</tr>
<tr>
<td>Simulation area</td>
<td>3663.96 km x 1655.20 km [24]</td>
</tr>
<tr>
<td>Total number of flows</td>
<td>[20000, 100000]</td>
</tr>
<tr>
<td>Number of switches</td>
<td>11</td>
</tr>
<tr>
<td>Switch capacity</td>
<td>8000 flow-rules [5]</td>
</tr>
<tr>
<td>Packet arrival rate per switch</td>
<td>0.02 mpps [10]</td>
</tr>
<tr>
<td>Packet processing rate per switch</td>
<td>0.03 mpps [10]</td>
</tr>
<tr>
<td>Rule matching time</td>
<td>20 ( \mu )s [25]</td>
</tr>
<tr>
<td>Transmission delay</td>
<td>5 ( \mu )s per kilometer [26]</td>
</tr>
<tr>
<td>Average queue size per switch</td>
<td>0.07 million packets [10]</td>
</tr>
</tbody>
</table>

B. Result and Discussion

1) Throughput: Throughput is measured as the percentage of packets processed per unit time. Fig. 5 shows the average throughput when the total number of flows is varied between 20 000 and 100 000. The average packet arrival rate and packet processing rate per switch are 0.02 mpps and 0.03 mpps, respectively. From the simulation, we observe that the average throughput for TERM is almost similar to Pallet, traditional SDN approach, and FAA.

2) Average Packet Waiting Time: Fig. 6 depicts the average packet waiting time for TERM, traditional SDN, Pallet, and FAA. The average packet waiting time of TERM is 14.81\%, 30.30\%, and 43.90\% less than traditional SDN, Pallet, and FAA, respectively. Therefore, we yield that the average packet waiting time is short in TERM, as the most frequently used rules are cached in each switch.

3) Free Rule-Space: The amount of free rule-space is the percentage of total rule-space available for storing new flow-rules. As shown in Fig. 7, the average free rule-space is significantly higher in TERM, as each rule aggregation procedure aggregates the existing rules and releases rule-space.

4) Packet-In Message Count: Fig. 8 shows the average number of Packet-In messages generated from each switch in the network. The cached rule-space size is fixed to 10\% of the
Fig. 7. Average free rule-space.

Fig. 8. Average number of Packet-In messages.

Fig. 9. Effect of cache size on Packet-In message count.

Fig. 10. Rule aggregation time.

Fig. 11. Rule reconstruction time.

V. Conclusion

In this paper, we proposed a rule-space management system, TERM, which aims to reduce flow-table miss by increasing the available capacity of switches in SDN. We used tensor decomposition technique to compress heterogeneous flow-rules. We evaluated the performance of the proposed scheme by comparing it with existing approaches. Results indicate enhanced performance in terms of reduced packet waiting time, increased free rule-space, and reduced number of Packet-In messages.

In the future, we aim to extend the proposed scheme by optimizing the rule caching procedure and the placement of flow-rules in SDN switches. The future extension of this paper also includes implementation of the proposed scheme in a real test bed.
REFERENCES


Ilora Maiti (S’15) received the M.E. degree in computer science from St. Xavier’s College, Kolkata, India, in 2011, and the M.Tech. degree in computer science from the West Bengal University of Technology, Kolkata, India, in 2008. She is currently working toward the Ph.D. degree at the Department of Computer Science and Engineering, IIT Kharagpur, Kharagpur, India.

Her current research interests include software defined networking, Internet of Things, and wireless sensor networks.

Ayan Mondal (S’13) received the M.S. degree in computer science from IIT Kharagpur, Kharagpur, India, in 2014, and the B.Tech. degree in electronics from the West Bengal University of Technology, Kolkata, India, in 2012. He is currently working toward the Ph.D. degree at the Department of Computer Science and Engineering, IIT Kharagpur.

His current research interests include algorithm design for big data networks, smart grids, and wire-less sensor networks.

Sudip Misra (SM’11) received the Ph.D. degree in computer science from Carleton University, Ottawa, ON, Canada.

He is currently a Professor with the Department of Computer Science and Engineering, IIT Kharagpur, Kharagpur, India. He has authored more than 300 scholarly research papers. He was also invited to deliver keynote/invited lectures in more than 30 international conferences in US, Canada, Europe, Asia, and Africa.

Dr. Misra has won several national and international awards including the IEEE ComSoc Asia Pacific Young Researcher Award during IEEE GLOBECOM 2012.

Chittaranjan Mandal (SM’15) is currently a Professor with the Department of Computer Science and Engineering, IIT Kharagpur, Kharagpur, India. He was a Reader with Jadavpur University, Calcutta. His research interests include application of formal methods, network, web, and learning technologies. Dr. Mandal was a recipient of a Commonwealth Scholarship, an Industrial Fellowship from Kingston University, and a Royal Society Short Visit Fellowship. He has more than a hundred international journal and conference publications; some of those have attracted best paper awards and significant number of citations.